Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Integrating animal tracking datasets at a continental scale for mapping Eurasian lynx habitat

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081766%3A_____%2F23%3A00578436" target="_blank" >RIV/68081766:_____/23:00578436 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60460709:41320/23:97917 RIV/62156489:43210/23:43924106 RIV/62156489:43410/23:43924106

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1111/ddi.13784" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/ddi.13784</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/ddi.13784" target="_blank" >10.1111/ddi.13784</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Integrating animal tracking datasets at a continental scale for mapping Eurasian lynx habitat

  • Popis výsledku v původním jazyce

    Aim: The increasing availability of animal tracking datasets collected across many sites provides new opportunities to move beyond local assessments to enable detailed and consistent habitat mapping at biogeographical scales. However, integrating wildlife datasets across large areas and study sites is challenging, as species' varying responses to different environmental contexts must be reconciled. Here, we compare approaches for large-area habitat mapping and assess available habitat for a recolonizing large carnivore, the Eurasian lynx (Lynx lynx).nLocation: Europe.nMethods: We use a continental-scale animal tracking database (450 individuals from 14 study sites) to systematically assess modelling approaches, comparing (1) global strategies that pool all data for training versus building local, site-specific models and combining them, (2) different approaches for incorporating regional variation in habitat selection and (3) different modelling algorithms, testing nonlinear mixed effects models as well as machine-learning algorithms. nResults: Testing models on training sites and simulating model transfers, global and local modelling strategies achieved overall similar predictive performance. Model performance was the highest using flexible machine-learning algorithms and when incorporating variation in habitat selection as a function of environmental variation. Our best-performing model used a weighted combination of local, site-specific habitat models. Our habitat maps identified large areas of suitable, but currently unoccupied lynx habitat, with many of the most suitable unoccupied areas located in regions that could foster connectivity between currently isolated populations.nMain Conclusions: We demonstrate that global and local modelling strategies can achieve robust habitat models at the continental scale and that considering regional variation in habitat selection improves broad-scale habitat mapping. More generally, we highlight the promise of large wildlife tracking databases for large-area habitat mapping. Our maps provide the first high-resolution, yet continental assessment of lynx habitat across Europe, providing a consistent basis for conservation planning for restoring the species within its former range.

  • Název v anglickém jazyce

    Integrating animal tracking datasets at a continental scale for mapping Eurasian lynx habitat

  • Popis výsledku anglicky

    Aim: The increasing availability of animal tracking datasets collected across many sites provides new opportunities to move beyond local assessments to enable detailed and consistent habitat mapping at biogeographical scales. However, integrating wildlife datasets across large areas and study sites is challenging, as species' varying responses to different environmental contexts must be reconciled. Here, we compare approaches for large-area habitat mapping and assess available habitat for a recolonizing large carnivore, the Eurasian lynx (Lynx lynx).nLocation: Europe.nMethods: We use a continental-scale animal tracking database (450 individuals from 14 study sites) to systematically assess modelling approaches, comparing (1) global strategies that pool all data for training versus building local, site-specific models and combining them, (2) different approaches for incorporating regional variation in habitat selection and (3) different modelling algorithms, testing nonlinear mixed effects models as well as machine-learning algorithms. nResults: Testing models on training sites and simulating model transfers, global and local modelling strategies achieved overall similar predictive performance. Model performance was the highest using flexible machine-learning algorithms and when incorporating variation in habitat selection as a function of environmental variation. Our best-performing model used a weighted combination of local, site-specific habitat models. Our habitat maps identified large areas of suitable, but currently unoccupied lynx habitat, with many of the most suitable unoccupied areas located in regions that could foster connectivity between currently isolated populations.nMain Conclusions: We demonstrate that global and local modelling strategies can achieve robust habitat models at the continental scale and that considering regional variation in habitat selection improves broad-scale habitat mapping. More generally, we highlight the promise of large wildlife tracking databases for large-area habitat mapping. Our maps provide the first high-resolution, yet continental assessment of lynx habitat across Europe, providing a consistent basis for conservation planning for restoring the species within its former range.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10613 - Zoology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Diversity and Distributions

  • ISSN

    1366-9516

  • e-ISSN

    1472-4642

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    1546-1560

  • Kód UT WoS článku

    001086586100001

  • EID výsledku v databázi Scopus

    2-s2.0-85174273080