Integrating animal tracking datasets at a continental scale for mapping Eurasian lynx habitat
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081766%3A_____%2F23%3A00578436" target="_blank" >RIV/68081766:_____/23:00578436 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41320/23:97917 RIV/62156489:43210/23:43924106 RIV/62156489:43410/23:43924106
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1111/ddi.13784" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/ddi.13784</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/ddi.13784" target="_blank" >10.1111/ddi.13784</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integrating animal tracking datasets at a continental scale for mapping Eurasian lynx habitat
Popis výsledku v původním jazyce
Aim: The increasing availability of animal tracking datasets collected across many sites provides new opportunities to move beyond local assessments to enable detailed and consistent habitat mapping at biogeographical scales. However, integrating wildlife datasets across large areas and study sites is challenging, as species' varying responses to different environmental contexts must be reconciled. Here, we compare approaches for large-area habitat mapping and assess available habitat for a recolonizing large carnivore, the Eurasian lynx (Lynx lynx).nLocation: Europe.nMethods: We use a continental-scale animal tracking database (450 individuals from 14 study sites) to systematically assess modelling approaches, comparing (1) global strategies that pool all data for training versus building local, site-specific models and combining them, (2) different approaches for incorporating regional variation in habitat selection and (3) different modelling algorithms, testing nonlinear mixed effects models as well as machine-learning algorithms. nResults: Testing models on training sites and simulating model transfers, global and local modelling strategies achieved overall similar predictive performance. Model performance was the highest using flexible machine-learning algorithms and when incorporating variation in habitat selection as a function of environmental variation. Our best-performing model used a weighted combination of local, site-specific habitat models. Our habitat maps identified large areas of suitable, but currently unoccupied lynx habitat, with many of the most suitable unoccupied areas located in regions that could foster connectivity between currently isolated populations.nMain Conclusions: We demonstrate that global and local modelling strategies can achieve robust habitat models at the continental scale and that considering regional variation in habitat selection improves broad-scale habitat mapping. More generally, we highlight the promise of large wildlife tracking databases for large-area habitat mapping. Our maps provide the first high-resolution, yet continental assessment of lynx habitat across Europe, providing a consistent basis for conservation planning for restoring the species within its former range.
Název v anglickém jazyce
Integrating animal tracking datasets at a continental scale for mapping Eurasian lynx habitat
Popis výsledku anglicky
Aim: The increasing availability of animal tracking datasets collected across many sites provides new opportunities to move beyond local assessments to enable detailed and consistent habitat mapping at biogeographical scales. However, integrating wildlife datasets across large areas and study sites is challenging, as species' varying responses to different environmental contexts must be reconciled. Here, we compare approaches for large-area habitat mapping and assess available habitat for a recolonizing large carnivore, the Eurasian lynx (Lynx lynx).nLocation: Europe.nMethods: We use a continental-scale animal tracking database (450 individuals from 14 study sites) to systematically assess modelling approaches, comparing (1) global strategies that pool all data for training versus building local, site-specific models and combining them, (2) different approaches for incorporating regional variation in habitat selection and (3) different modelling algorithms, testing nonlinear mixed effects models as well as machine-learning algorithms. nResults: Testing models on training sites and simulating model transfers, global and local modelling strategies achieved overall similar predictive performance. Model performance was the highest using flexible machine-learning algorithms and when incorporating variation in habitat selection as a function of environmental variation. Our best-performing model used a weighted combination of local, site-specific habitat models. Our habitat maps identified large areas of suitable, but currently unoccupied lynx habitat, with many of the most suitable unoccupied areas located in regions that could foster connectivity between currently isolated populations.nMain Conclusions: We demonstrate that global and local modelling strategies can achieve robust habitat models at the continental scale and that considering regional variation in habitat selection improves broad-scale habitat mapping. More generally, we highlight the promise of large wildlife tracking databases for large-area habitat mapping. Our maps provide the first high-resolution, yet continental assessment of lynx habitat across Europe, providing a consistent basis for conservation planning for restoring the species within its former range.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10613 - Zoology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Diversity and Distributions
ISSN
1366-9516
e-ISSN
1472-4642
Svazek periodika
29
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1546-1560
Kód UT WoS článku
001086586100001
EID výsledku v databázi Scopus
2-s2.0-85174273080