Numerical Solution of the Time-Dependent Navier?Stokes Equation for Variable Density?Variable Viscosity. Part I
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F15%3A00455980" target="_blank" >RIV/68145535:_____/15:00455980 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.tandfonline.com/doi/abs/10.3846/13926292.2015.1021395" target="_blank" >http://www.tandfonline.com/doi/abs/10.3846/13926292.2015.1021395</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3846/13926292.2015.1021395" target="_blank" >10.3846/13926292.2015.1021395</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical Solution of the Time-Dependent Navier?Stokes Equation for Variable Density?Variable Viscosity. Part I
Popis výsledku v původním jazyce
We consider methods for the numerical simulations of variable density incompressible fluids, modelled by the Navier-Stokes equations. Variable density problems arise, for instance, in interfaces between fluids of different densities in multiphase flows such as appearing in porous media problems. We show that by solving the Navier-Stokes equation for the momentum variable instead of the velocity the corresponding saddle point problem, arising at each time step, no special treatment of the pressure variable is required and leads to an efficient preconditioning of the arising block matrix. This study consists of two parts, of which this paper constitutes Part I. Here we present the algorithm, compare it with a broadly used projectiontype method and illustrate some advantages and disadvantages of both techniques via analysis and numerical experiments. In addition we also include test results for a method, based on coupling of the Navier-Stokes equations with a phase-field model, where the
Název v anglickém jazyce
Numerical Solution of the Time-Dependent Navier?Stokes Equation for Variable Density?Variable Viscosity. Part I
Popis výsledku anglicky
We consider methods for the numerical simulations of variable density incompressible fluids, modelled by the Navier-Stokes equations. Variable density problems arise, for instance, in interfaces between fluids of different densities in multiphase flows such as appearing in porous media problems. We show that by solving the Navier-Stokes equation for the momentum variable instead of the velocity the corresponding saddle point problem, arising at each time step, no special treatment of the pressure variable is required and leads to an efficient preconditioning of the arising block matrix. This study consists of two parts, of which this paper constitutes Part I. Here we present the algorithm, compare it with a broadly used projectiontype method and illustrate some advantages and disadvantages of both techniques via analysis and numerical experiments. In addition we also include test results for a method, based on coupling of the Navier-Stokes equations with a phase-field model, where the
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Modeling and Analysis
ISSN
1392-6292
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
LT - Litevská republika
Počet stran výsledku
29
Strana od-do
232-260
Kód UT WoS článku
000351931100006
EID výsledku v databázi Scopus
—