Comparative modelling of laboratory experiments for the hydro-mechanical behaviour of a compacted bentonite–sandnmixture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F16%3A00463747" target="_blank" >RIV/68145535:_____/16:00463747 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007/s12665-016-6118-z" target="_blank" >http://link.springer.com/article/10.1007/s12665-016-6118-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12665-016-6118-z" target="_blank" >10.1007/s12665-016-6118-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative modelling of laboratory experiments for the hydro-mechanical behaviour of a compacted bentonite–sandnmixture
Popis výsledku v původním jazyce
A comparative modelling exercise involving several independent teams from the DECOVALEX-2015 project is presented in this paper. The exercise is based on various laboratory experiments that have been carried out in the framework of a French research programme called SEALEX and conducted by the IRSN. The programme focuses on the long-term performance of swelling clay-based sealing systems that provide an important contribution to the safety of underground nuclear waste disposal facilities. A number of materials are being considered in the sealing systems; the current work focuses on a 70/30 MX80 bentonite–sand mixture compacted at dry densities between 1.67 and 1.97 Mg/m3. The improved understanding of the full set of hydro-mechanical processes affecting the behaviour of an in situ sealing system requires both experiments ranging from small-scale laboratory tests to full-scale field emplacement studies and coupled hydro-mechanical models that are able to explain the observations in the experiments. The approach was to build models of increasing complexity starting for the simplest laboratory experiments and building towards the full-scale in situ experiments. Following this approach, two sets of small-scale laboratory experiments have been performed and modelled. The first set of experiments involves characterizing the hydro-mechanical behaviour of the bentonite–sand mixture by means of (1) water retention tests under both constant volume and free swell conditions, (2) infiltration test under constant volume condition, and (3) swelling and compression tests under suction control conditions. The second, more complex, experiment is a 1/10th scale mock-up of a larger-scale in situ experiment. Modelling of the full-scale experiment is described in a companion paper.
Název v anglickém jazyce
Comparative modelling of laboratory experiments for the hydro-mechanical behaviour of a compacted bentonite–sandnmixture
Popis výsledku anglicky
A comparative modelling exercise involving several independent teams from the DECOVALEX-2015 project is presented in this paper. The exercise is based on various laboratory experiments that have been carried out in the framework of a French research programme called SEALEX and conducted by the IRSN. The programme focuses on the long-term performance of swelling clay-based sealing systems that provide an important contribution to the safety of underground nuclear waste disposal facilities. A number of materials are being considered in the sealing systems; the current work focuses on a 70/30 MX80 bentonite–sand mixture compacted at dry densities between 1.67 and 1.97 Mg/m3. The improved understanding of the full set of hydro-mechanical processes affecting the behaviour of an in situ sealing system requires both experiments ranging from small-scale laboratory tests to full-scale field emplacement studies and coupled hydro-mechanical models that are able to explain the observations in the experiments. The approach was to build models of increasing complexity starting for the simplest laboratory experiments and building towards the full-scale in situ experiments. Following this approach, two sets of small-scale laboratory experiments have been performed and modelled. The first set of experiments involves characterizing the hydro-mechanical behaviour of the bentonite–sand mixture by means of (1) water retention tests under both constant volume and free swell conditions, (2) infiltration test under constant volume condition, and (3) swelling and compression tests under suction control conditions. The second, more complex, experiment is a 1/10th scale mock-up of a larger-scale in situ experiment. Modelling of the full-scale experiment is described in a companion paper.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DB - Geologie a mineralogie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Environmental Earth Sciences
ISSN
1866-6280
e-ISSN
—
Svazek periodika
75
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
18
Strana od-do
1311-1327
Kód UT WoS článku
000385135100012
EID výsledku v databázi Scopus
—