Fragmentation of KrN+ clusters after electron impact ionization II. Long-time dynamics simulations of Kr7+ evolution and the role of initial electronic excitation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F17%3A00478084" target="_blank" >RIV/68145535:_____/17:00478084 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/17:10237549
Výsledek na webu
<a href="http://pubs.rsc.org/en/content/articlelanding/2014/cp/c7cp03940a#!divAbstract" target="_blank" >http://pubs.rsc.org/en/content/articlelanding/2014/cp/c7cp03940a#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/C7CP03940A" target="_blank" >10.1039/C7CP03940A</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fragmentation of KrN+ clusters after electron impact ionization II. Long-time dynamics simulations of Kr7+ evolution and the role of initial electronic excitation
Popis výsledku v původním jazyce
Long time simulations, up to 100 ns, have been performed for the fragmentation of Kr7+ clusters after electron impact ionization. They rely on DIM approaches and hybrid non-adiabatic dynamics combining mean field and decoherence driven either by Tully fewest switches (TFS) algorithm or through electronic amplitude (AMP) calculations. With both methods, for the first time, when the initial electronic excited state belongs to group II correlating to P1/2 atomic ions, the fragmentation ratio in mainly monomer and dimer ions agrees very well with known experimental results. A complex non-adiabatic dynamics is found where initial neutral monomer evaporations due to gradual deexcitation over electronic states of group II are followed by a non-adiabatic transition across a wide energy gap of the spin–orbit origin to electronic states of group I. The resulting excess of kinetic energy causes the final fragmentation of charged intermediate fragments to stable ionic monomers or dimers. Characteristic times of these processes have been estimated. The kinetic energy distribution of the neutral and ionic monomers (the dominating final fragments) has been analyzed in detail. Interestingly they exhibit some signature of the initial excited electronic state which could allow for an experimental identification.
Název v anglickém jazyce
Fragmentation of KrN+ clusters after electron impact ionization II. Long-time dynamics simulations of Kr7+ evolution and the role of initial electronic excitation
Popis výsledku anglicky
Long time simulations, up to 100 ns, have been performed for the fragmentation of Kr7+ clusters after electron impact ionization. They rely on DIM approaches and hybrid non-adiabatic dynamics combining mean field and decoherence driven either by Tully fewest switches (TFS) algorithm or through electronic amplitude (AMP) calculations. With both methods, for the first time, when the initial electronic excited state belongs to group II correlating to P1/2 atomic ions, the fragmentation ratio in mainly monomer and dimer ions agrees very well with known experimental results. A complex non-adiabatic dynamics is found where initial neutral monomer evaporations due to gradual deexcitation over electronic states of group II are followed by a non-adiabatic transition across a wide energy gap of the spin–orbit origin to electronic states of group I. The resulting excess of kinetic energy causes the final fragmentation of charged intermediate fragments to stable ionic monomers or dimers. Characteristic times of these processes have been estimated. The kinetic energy distribution of the neutral and ionic monomers (the dominating final fragments) has been analyzed in detail. Interestingly they exhibit some signature of the initial excited electronic state which could allow for an experimental identification.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
37
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
25423-25440
Kód UT WoS článku
000412271600020
EID výsledku v databázi Scopus
—