Effect of frequency change during pulsed waterjet interaction with stainless steel
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F19%3A00494159" target="_blank" >RIV/68145535:_____/19:00494159 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41310/19:79249
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-99353-9_10" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-99353-9_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-99353-9_10" target="_blank" >10.1007/978-3-319-99353-9_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of frequency change during pulsed waterjet interaction with stainless steel
Popis výsledku v původním jazyce
In the present work a detailed effect of pulsating water jet treatment with the variation of standoff distance on the flat austenitic stainless steel surface has been studied. During the experimentation, at a traverse speed of 30 mm/s accidently the change in frequency was encountered in the repeated test (under same treatment condition) which has been reported in this work. The frequency was changed from f = 20.11 kHz to f = 20.27 kHz during the treatment process at the pressure of p = 70 MPa with variation in standoff distance was increased from z = 5 mm up to z = 101 mm (with step distance of 2 mm between successive standoff distance). The change in microstructural topography of the treated surface under the above-mentioned conditions was observed using scanning electron microscopy (SEM). The strengthening mechanism on the surface and sub-surface region due to the plastic deformation phenomenon caused by the impact of the pulsating jet was evaluated by Vickers microhardness test. The micro hardness test was conducted along the depth of the treated region to analyze the effects in the sub-surface layers. Also, the erosion stages at different standoff distance was evaluated by scanning the surface by optical MicroProf FRT profilometer in order to analyze the nature of erosion phenomenon with the variation of standoff distance and frequency during the treatment process. The results obtained indicates that the change in frequency of the pulsations and the variation in standoff distance has a significant impact on the surface integrity of the treated material. As compare to the untreated surface the hardness of the treated surface was increased up to a certain depth and the higher frequency of pulsations has shown better improvement in the hardness values. The above observations elaborated the effect of an important parameter frequency and standoff distance for better and effective utilization of the technology for the surface treatment application.
Název v anglickém jazyce
Effect of frequency change during pulsed waterjet interaction with stainless steel
Popis výsledku anglicky
In the present work a detailed effect of pulsating water jet treatment with the variation of standoff distance on the flat austenitic stainless steel surface has been studied. During the experimentation, at a traverse speed of 30 mm/s accidently the change in frequency was encountered in the repeated test (under same treatment condition) which has been reported in this work. The frequency was changed from f = 20.11 kHz to f = 20.27 kHz during the treatment process at the pressure of p = 70 MPa with variation in standoff distance was increased from z = 5 mm up to z = 101 mm (with step distance of 2 mm between successive standoff distance). The change in microstructural topography of the treated surface under the above-mentioned conditions was observed using scanning electron microscopy (SEM). The strengthening mechanism on the surface and sub-surface region due to the plastic deformation phenomenon caused by the impact of the pulsating jet was evaluated by Vickers microhardness test. The micro hardness test was conducted along the depth of the treated region to analyze the effects in the sub-surface layers. Also, the erosion stages at different standoff distance was evaluated by scanning the surface by optical MicroProf FRT profilometer in order to analyze the nature of erosion phenomenon with the variation of standoff distance and frequency during the treatment process. The results obtained indicates that the change in frequency of the pulsations and the variation in standoff distance has a significant impact on the surface integrity of the treated material. As compare to the untreated surface the hardness of the treated surface was increased up to a certain depth and the higher frequency of pulsations has shown better improvement in the hardness values. The above observations elaborated the effect of an important parameter frequency and standoff distance for better and effective utilization of the technology for the surface treatment application.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1406" target="_blank" >LO1406: Institut čistých technologií těžby a užití energetických surovin - Projekt udržitelnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Manufacturing Engineering and Materials
ISBN
978-3-319-99353-9
ISSN
2195-4356
e-ISSN
—
Počet stran výsledku
12
Strana od-do
85-96
Název nakladatele
Springer Nature Switzerland AG 2019
Místo vydání
Basel
Místo konání akce
Nový Smokovec
Datum konání akce
18. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000462541600010