A comparison of approaches for the construction of reduced basis for stochastic Galerkin matrix equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F20%3A00534428" target="_blank" >RIV/68145535:_____/20:00534428 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/20:10244839
Výsledek na webu
<a href="https://link.springer.com/article/10.21136/AM.2020.0257-19" target="_blank" >https://link.springer.com/article/10.21136/AM.2020.0257-19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2020.0257-19" target="_blank" >10.21136/AM.2020.0257-19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparison of approaches for the construction of reduced basis for stochastic Galerkin matrix equations
Popis výsledku v původním jazyce
We examine different approaches to an efficient solution of the stochastic Galerkin (SG) matrix equations coming from the Darcy flow problem with different, uncertain coefficients in apriori known subdomains. The solution of the SG system of equations is usually a very challenging task. A relatively new approach to the solution of the SG matrix equations is the reduced basis (RB) solver, which looks for a low-rank representation of the solution. The construction of the RB is usually done iteratively and consists of multiple solutions of systems of equations. We examine multiple approaches and their modifications to the construction of the RB, namely the reduced rational Krylov subspace method and Monte Carlo sampling approach. We also aim at speeding up the process using the deflated conjugate gradients (DCG). We test and compare these methods on a set of problems with a varying random behavior of the material on subdomains as well as different geometries of subdomains.
Název v anglickém jazyce
A comparison of approaches for the construction of reduced basis for stochastic Galerkin matrix equations
Popis výsledku anglicky
We examine different approaches to an efficient solution of the stochastic Galerkin (SG) matrix equations coming from the Darcy flow problem with different, uncertain coefficients in apriori known subdomains. The solution of the SG system of equations is usually a very challenging task. A relatively new approach to the solution of the SG matrix equations is the reduced basis (RB) solver, which looks for a low-rank representation of the solution. The construction of the RB is usually done iteratively and consists of multiple solutions of systems of equations. We examine multiple approaches and their modifications to the construction of the RB, namely the reduced rational Krylov subspace method and Monte Carlo sampling approach. We also aim at speeding up the process using the deflated conjugate gradients (DCG). We test and compare these methods on a set of problems with a varying random behavior of the material on subdomains as well as different geometries of subdomains.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Svazek periodika
65
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
35
Strana od-do
191-225
Kód UT WoS článku
000525004700005
EID výsledku v databázi Scopus
2-s2.0-85083344352