Observation of cryogenically cooled ice particles inside the high-speed water jet
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F21%3A00534314" target="_blank" >RIV/68145535:_____/21:00534314 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0924013620303642?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0924013620303642?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmatprotec.2020.116947" target="_blank" >10.1016/j.jmatprotec.2020.116947</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Observation of cryogenically cooled ice particles inside the high-speed water jet
Popis výsledku v původním jazyce
The Ice abrasive water jet technology uses cryogenically cooled ice particles instead of the mineral abrasive used in the Abrasive water jet technology. The aim is to avoid contamination of workpieces with mineral abrasives and to reduce the environmental impact of this technology. The ice particles are sucked into a high-speed water jet with speeds of up to 600 m∙s-1 using the Venturi effect. Direct observation of the process is very difficult due to the extreme operating conditions. We have clearly shown that at least some of the ice particles, which have cryogenic temperatures when entering the high-speed water jet, neither completely melt nor are completely crushed in contact with the jet. Further on, the erosion capability of ice particles was evaluated by blasting the aluminium and glass surfaces at two impinging angles and compared to garnet mineral abrasive, showing that ice particles have the potential to generate similar damage in the workpiece material as garnet. These findings pave the way for exploring the potential of abrasive waterjet technology in a wide range of new applications, such as food processing, medical implant and turbine blade manufacturing, and post-processing of parts manufactured with additive manufacturing technologies.
Název v anglickém jazyce
Observation of cryogenically cooled ice particles inside the high-speed water jet
Popis výsledku anglicky
The Ice abrasive water jet technology uses cryogenically cooled ice particles instead of the mineral abrasive used in the Abrasive water jet technology. The aim is to avoid contamination of workpieces with mineral abrasives and to reduce the environmental impact of this technology. The ice particles are sucked into a high-speed water jet with speeds of up to 600 m∙s-1 using the Venturi effect. Direct observation of the process is very difficult due to the extreme operating conditions. We have clearly shown that at least some of the ice particles, which have cryogenic temperatures when entering the high-speed water jet, neither completely melt nor are completely crushed in contact with the jet. Further on, the erosion capability of ice particles was evaluated by blasting the aluminium and glass surfaces at two impinging angles and compared to garnet mineral abrasive, showing that ice particles have the potential to generate similar damage in the workpiece material as garnet. These findings pave the way for exploring the potential of abrasive waterjet technology in a wide range of new applications, such as food processing, medical implant and turbine blade manufacturing, and post-processing of parts manufactured with additive manufacturing technologies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Processing Technology
ISSN
0924-0136
e-ISSN
—
Svazek periodika
289
Číslo periodika v rámci svazku
March 2021
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
116947
Kód UT WoS článku
000600996700018
EID výsledku v databázi Scopus
2-s2.0-85095680177