Influence of the frequency and flow rate of a pulsating water jet on the wear damage of tantalum
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F21%3A00545758" target="_blank" >RIV/68145535:_____/21:00545758 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27230/21:10248586
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0043164821002829?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0043164821002829?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.wear.2021.203893" target="_blank" >10.1016/j.wear.2021.203893</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Influence of the frequency and flow rate of a pulsating water jet on the wear damage of tantalum
Popis výsledku v původním jazyce
The present study focuses on the hydrodynamic erosion of tantalum in the form of the disintegration depth when exposed to periodic impingements of water clusters. Discrete water clusters were generated using a pulsating water jet at excitation frequencies of 20 and 40 kHz to modulate the continuous jet into a pulsating jet. The influence of the technological parameters, such as the excitation frequency (20 and 40 kHz), supply pressure (20, 30, and 40 MPa), nozzle diameter (0.3 and 0.5 mm), and time exposure (0.25–128 s), on the erosion depth of tantalum was observed. The disintegration depth trend showed a proportional nature with the number of impingements directed to the tantalum surface keeping all other technological parameters constant. An increase in the water flow rate from 0.76 l/min (p = 20 MPa, d = 0.3 mm) to 3 l/min (p = 40 MPa, d = 0.5 mm), reduces the time exposure required for the initiation of disintegration from 4 s (80,800 impingements with f = 20 kHz) to 1 s (40,600 impingements with f = 40 kHz), respectively. The effect of change in the excitation frequency from 20 to 40 kHz was observed in form of an increase in the erosion depth from 1587 to 1762 μm at p = 40 MPa, d = 0.5 mm, and t = 128 s. The surface morphology observed using scanning electron microscopy revealed erosion features, such as craters, micro-holes, surface upheaving, and tearing, on the tantalum surface. No significant change in the mean micro-hardness values were observed near the periphery of the eroded cavity as compared to original material due to high-density of tantalum which obstruct the propagation of shock waves into the material. The outcome of the study enhances the knowledge regarding the hydrodynamic erosion of high-density materials (ρ > 15 kg/mm3) in response to the water flow rate, frequency, and time exposure.
Název v anglickém jazyce
Influence of the frequency and flow rate of a pulsating water jet on the wear damage of tantalum
Popis výsledku anglicky
The present study focuses on the hydrodynamic erosion of tantalum in the form of the disintegration depth when exposed to periodic impingements of water clusters. Discrete water clusters were generated using a pulsating water jet at excitation frequencies of 20 and 40 kHz to modulate the continuous jet into a pulsating jet. The influence of the technological parameters, such as the excitation frequency (20 and 40 kHz), supply pressure (20, 30, and 40 MPa), nozzle diameter (0.3 and 0.5 mm), and time exposure (0.25–128 s), on the erosion depth of tantalum was observed. The disintegration depth trend showed a proportional nature with the number of impingements directed to the tantalum surface keeping all other technological parameters constant. An increase in the water flow rate from 0.76 l/min (p = 20 MPa, d = 0.3 mm) to 3 l/min (p = 40 MPa, d = 0.5 mm), reduces the time exposure required for the initiation of disintegration from 4 s (80,800 impingements with f = 20 kHz) to 1 s (40,600 impingements with f = 40 kHz), respectively. The effect of change in the excitation frequency from 20 to 40 kHz was observed in form of an increase in the erosion depth from 1587 to 1762 μm at p = 40 MPa, d = 0.5 mm, and t = 128 s. The surface morphology observed using scanning electron microscopy revealed erosion features, such as craters, micro-holes, surface upheaving, and tearing, on the tantalum surface. No significant change in the mean micro-hardness values were observed near the periphery of the eroded cavity as compared to original material due to high-density of tantalum which obstruct the propagation of shock waves into the material. The outcome of the study enhances the knowledge regarding the hydrodynamic erosion of high-density materials (ρ > 15 kg/mm3) in response to the water flow rate, frequency, and time exposure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008407" target="_blank" >EF17_049/0008407: Inovativní a aditivní technologie výroby - nová technologická řešení 3D tisku kovů a kompozitních materiálů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Wear
ISSN
0043-1648
e-ISSN
1873-2577
Svazek periodika
477
Číslo periodika v rámci svazku
July 2021
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
203893
Kód UT WoS článku
000679170600003
EID výsledku v databázi Scopus
2-s2.0-85104346368