Optimization and variational principles for the shear strength reduction method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F21%3A00548188" target="_blank" >RIV/68145535:_____/21:00548188 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27120/21:10248971
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/nag.3270" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/nag.3270</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nag.3270" target="_blank" >10.1002/nag.3270</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization and variational principles for the shear strength reduction method
Popis výsledku v původním jazyce
In this paper, a modified shear strength reduction method (MSSR) and its optimization variant (OPT-MSSR) are suggested. The idea of MSSR is to approximate the standard shear strength reduction to be more stable and rigorous from the numerical point of view. The MSSR method consists of a simplified associated elasto-plastic model completed by the strength reduction depending on the dilatancy angle. Three Davis' modifications suggested by Tschuchnigg et al. (2015) are interpreted as special cases of MSSR and their factors of safety are compared. The OPT-MSSR method is derived from MSSR on the basis of rigid plastic assumption, similarly as in limit analysis. Using the variational approach, the duality between the static and kinematic principles of OPT-MSSR is shown. The numerical solution of OPT-MSRR is obtained by performing a regularization method in combination with the finite element method, mesh adaptivity and a damped Newton method. In-house codes (Matlab) are used for the implementation of this solution concept. Finally, two slope stability problems are considered, one of which follows from analysis of a real slope. The softwares packages Plaxis and Comsol Multiphysics are used for comparison of the results.
Název v anglickém jazyce
Optimization and variational principles for the shear strength reduction method
Popis výsledku anglicky
In this paper, a modified shear strength reduction method (MSSR) and its optimization variant (OPT-MSSR) are suggested. The idea of MSSR is to approximate the standard shear strength reduction to be more stable and rigorous from the numerical point of view. The MSSR method consists of a simplified associated elasto-plastic model completed by the strength reduction depending on the dilatancy angle. Three Davis' modifications suggested by Tschuchnigg et al. (2015) are interpreted as special cases of MSSR and their factors of safety are compared. The OPT-MSSR method is derived from MSSR on the basis of rigid plastic assumption, similarly as in limit analysis. Using the variational approach, the duality between the static and kinematic principles of OPT-MSSR is shown. The numerical solution of OPT-MSRR is obtained by performing a regularization method in combination with the finite element method, mesh adaptivity and a damped Newton method. In-house codes (Matlab) are used for the implementation of this solution concept. Finally, two slope stability problems are considered, one of which follows from analysis of a real slope. The softwares packages Plaxis and Comsol Multiphysics are used for comparison of the results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-11441S" target="_blank" >GA19-11441S: Efektivní a spolehlivé výpočetní techniky pro limitní analýzu a přírůstkové metody v geotechnické stabilitě</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Numerical and Analytical Methods in Geomechanics
ISSN
0363-9061
e-ISSN
1096-9853
Svazek periodika
45
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
2388-2407
Kód UT WoS článku
000687027100001
EID výsledku v databázi Scopus
2-s2.0-85113158232