Data Quality in Citizen Science
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F21%3A00556712" target="_blank" >RIV/68145535:_____/21:00556712 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-58278-4_8" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-58278-4_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-58278-4_8" target="_blank" >10.1007/978-3-030-58278-4_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data Quality in Citizen Science
Popis výsledku v původním jazyce
This chapter discusses the broad and complex topic of data quality in citizen science – a contested arena because different projects and stakeholders aspire to different levels of data accuracy. In this chapter, we consider how we ensure the validity and reliability of data generated by citizen scientists and citizen science projects. We show that this is an essential methodological question that has emerged within a highly contested field in recent years. Data quality means different things to different stakeholders. This is no surprise as quality is always a broad spectrum, and nearly 200 terms are in use to describe it, regardless of the approach. We seek to deliver a high-level overview of the main themes and issues in data quality in citizen science, mechanisms to ensure and improve quality, and some conclusions on best practice and ways forwards. We encourage citizen science projects to share insights on their data practice failures. Finally, we show how data quality assurance gives credibility, reputation, and sustainability to citizen science projects.
Název v anglickém jazyce
Data Quality in Citizen Science
Popis výsledku anglicky
This chapter discusses the broad and complex topic of data quality in citizen science – a contested arena because different projects and stakeholders aspire to different levels of data accuracy. In this chapter, we consider how we ensure the validity and reliability of data generated by citizen scientists and citizen science projects. We show that this is an essential methodological question that has emerged within a highly contested field in recent years. Data quality means different things to different stakeholders. This is no surprise as quality is always a broad spectrum, and nearly 200 terms are in use to describe it, regardless of the approach. We seek to deliver a high-level overview of the main themes and issues in data quality in citizen science, mechanisms to ensure and improve quality, and some conclusions on best practice and ways forwards. We encourage citizen science projects to share insights on their data practice failures. Finally, we show how data quality assurance gives credibility, reputation, and sustainability to citizen science projects.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
50803 - Information science (social aspects)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
The Science of Citizen Science
ISBN
978-3-030-58277-7
Počet stran výsledku
19
Strana od-do
139-157
Počet stran knihy
529
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—