Quasi-Newton iterative solution approaches for nonsmooth elliptic operators with applications to elasto-plasticity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F25%3A00602018" target="_blank" >RIV/68145535:_____/25:00602018 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.camwa.2024.11.022" target="_blank" >https://doi.org/10.1016/j.camwa.2024.11.022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.camwa.2024.11.022" target="_blank" >10.1016/j.camwa.2024.11.022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quasi-Newton iterative solution approaches for nonsmooth elliptic operators with applications to elasto-plasticity
Popis výsledku v původním jazyce
This paper is devoted to the extension of a quasi-Newton/variable preconditioning (QNVP) method to non-smooth problems, motivated by elasto-plastic models. Two approaches are discussed: the first one is carried out via regularized approximations of the nonsmooth problem, and the second one gives an extension to nonsmooth operators in order to be applied directly. Convergence analysis is presented for both variants. Then these abstract methods are applied to elasto-plasticity where two different variants of QNVP are investigated and combined with the deflated conjugate gradient and aggregation-based algebraic multigrid methods. The convergence results are illustrated on numerical examples in 3D inspired by real-life problems, and they demonstrate that the suggested QNVP methods are competitive with the standard Newton method. Well-documented Matlab codes on elasto-plasticity are used and enriched by the suggested methods.
Název v anglickém jazyce
Quasi-Newton iterative solution approaches for nonsmooth elliptic operators with applications to elasto-plasticity
Popis výsledku anglicky
This paper is devoted to the extension of a quasi-Newton/variable preconditioning (QNVP) method to non-smooth problems, motivated by elasto-plastic models. Two approaches are discussed: the first one is carried out via regularized approximations of the nonsmooth problem, and the second one gives an extension to nonsmooth operators in order to be applied directly. Convergence analysis is presented for both variants. Then these abstract methods are applied to elasto-plasticity where two different variants of QNVP are investigated and combined with the deflated conjugate gradient and aggregation-based algebraic multigrid methods. The convergence results are illustrated on numerical examples in 3D inspired by real-life problems, and they demonstrate that the suggested QNVP methods are competitive with the standard Newton method. Well-documented Matlab codes on elasto-plasticity are used and enriched by the suggested methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2025
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers & Mathematics With Applications
ISSN
0898-1221
e-ISSN
1873-7668
Svazek periodika
178
Číslo periodika v rámci svazku
January 2025
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
61-80
Kód UT WoS článku
001368979100001
EID výsledku v databázi Scopus
2-s2.0-85210065628