Effect of Ganoderma lucidum on DNA damage and DNA repair in colorectal cancer cell lines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378041%3A_____%2F16%3A00475319" target="_blank" >RIV/68378041:_____/16:00475319 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of Ganoderma lucidum on DNA damage and DNA repair in colorectal cancer cell lines
Popis výsledku v původním jazyce
Colorectal cancer (CRC) is the third most common malignancy in the world and second most common cause of cancer related deaths in Europe. CRC is complex disease that develops as consequence of environmental and health risk factors with involvement of suboptimal DNA repair, resulting in an accumulation of DNA damage. Reactive oxygen species (ROS) are highly reactive molecules strictly controlled by cellular antioxidant system. Disturbance in the prooxidation–antioxidation homeostasis increases an extent of ROS and consequently an accumulation of DNA damage as well as apoptosis. nMany natural compounds possess anti-cancer activities tentatively mediated by the generation of ROS. Cancer cells are more sensitive to oxidative DNA damage than non-malignant ones. Modulation of oxidative DNA damage and its repair by natural compounds may lead to selective cancer cell-death and further sensitization of cancer cells to the treatment. Ganoderma Lucidum (GLC) (Reishi, Ling-Zhi), a mushroom used in Chinese medicine for thousands of years, represents an example of a natural compound with empirically recorded anti-cancer as well as anti-proliferative effects. nThe aim of our study is to define effect of Ganoderma lucidum (GLC) extract on DNA damage and DNA repair system in colorectal cell lines with different genetic backgrounds.nOur results suggest that GLC extract decreases activity of the cellular antioxidant system which leads to oxidative DNA damage. GLC extract increases genotoxic burden in colorectal cancer cell lines, highlighted by the suppressed base excision repair capacity. These data indicate that specific oxidative DNA damage caused by natural compounds may become a potential tool for the improvement of specific anti-cancer treatment.n
Název v anglickém jazyce
Effect of Ganoderma lucidum on DNA damage and DNA repair in colorectal cancer cell lines
Popis výsledku anglicky
Colorectal cancer (CRC) is the third most common malignancy in the world and second most common cause of cancer related deaths in Europe. CRC is complex disease that develops as consequence of environmental and health risk factors with involvement of suboptimal DNA repair, resulting in an accumulation of DNA damage. Reactive oxygen species (ROS) are highly reactive molecules strictly controlled by cellular antioxidant system. Disturbance in the prooxidation–antioxidation homeostasis increases an extent of ROS and consequently an accumulation of DNA damage as well as apoptosis. nMany natural compounds possess anti-cancer activities tentatively mediated by the generation of ROS. Cancer cells are more sensitive to oxidative DNA damage than non-malignant ones. Modulation of oxidative DNA damage and its repair by natural compounds may lead to selective cancer cell-death and further sensitization of cancer cells to the treatment. Ganoderma Lucidum (GLC) (Reishi, Ling-Zhi), a mushroom used in Chinese medicine for thousands of years, represents an example of a natural compound with empirically recorded anti-cancer as well as anti-proliferative effects. nThe aim of our study is to define effect of Ganoderma lucidum (GLC) extract on DNA damage and DNA repair system in colorectal cell lines with different genetic backgrounds.nOur results suggest that GLC extract decreases activity of the cellular antioxidant system which leads to oxidative DNA damage. GLC extract increases genotoxic burden in colorectal cancer cell lines, highlighted by the suppressed base excision repair capacity. These data indicate that specific oxidative DNA damage caused by natural compounds may become a potential tool for the improvement of specific anti-cancer treatment.n
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
EI - Biotechnologie a bionika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů