Integrin-Driven Axon Regeneration in the Spinal Cord Activates a Distinctive CNS Regeneration Program
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378041%3A_____%2F23%3A00580785" target="_blank" >RIV/68378041:_____/23:00580785 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.jneurosci.org/content/43/26/4775" target="_blank" >https://www.jneurosci.org/content/43/26/4775</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1523/JNEUROSCI.2076-22.2023" target="_blank" >10.1523/JNEUROSCI.2076-22.2023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integrin-Driven Axon Regeneration in the Spinal Cord Activates a Distinctive CNS Regeneration Program
Popis výsledku v původním jazyce
The peripheral branch of sensory dorsal root ganglion (DRG) neurons regenerates readily after injury unlike their central branch in the spinal cord. However, extensive regeneration and reconnection of sensory axons in the spinal cord can be driven by the expression of a9 integrin and its activator kindlin-1 (a9k1), which enable axons to interact with tenascin-C. To elucidate the mechanisms and downstream pathways affected by activated integrin expression and central regeneration, we conducted transcriptomic analyses of adult male rat DRG sensory neurons transduced with a9k1, and controls, with and without axotomy of the central branch. Expression of a9k1 without the central axotomy led to upregulation of a known PNS regeneration program, including many genes associated with peripheral nerve regeneration. Coupling a9k1 treatment with dorsal root axotomy led to extensive central axonal regeneration. In addition to the program upregulated by a9k1 expression, regeneration in the spinal cord led to expression of a distinctive CNS regeneration program, including genes associated with ubiquitination, autophagy, endoplasmic reticulum (ER), trafficking, and signaling. Pharmacological inhibition of these processes blocked the regeneration of axons from DRGs and human iPSC-derived sensory neurons, validating their causal contributions to sensory regeneration. This CNS regeneration-associated program showed little correlation with either embryonic development or PNS regeneration programs. Potential transcriptional drivers of this CNS program coupled to regeneration include Mef2a, Runx3, E2f4, and Yy1. Signaling from integrins primes sensory neurons for regeneration, but their axon growth in the CNS is associated with an additional distinctive program that differs from that involved in PNS regeneration.
Název v anglickém jazyce
Integrin-Driven Axon Regeneration in the Spinal Cord Activates a Distinctive CNS Regeneration Program
Popis výsledku anglicky
The peripheral branch of sensory dorsal root ganglion (DRG) neurons regenerates readily after injury unlike their central branch in the spinal cord. However, extensive regeneration and reconnection of sensory axons in the spinal cord can be driven by the expression of a9 integrin and its activator kindlin-1 (a9k1), which enable axons to interact with tenascin-C. To elucidate the mechanisms and downstream pathways affected by activated integrin expression and central regeneration, we conducted transcriptomic analyses of adult male rat DRG sensory neurons transduced with a9k1, and controls, with and without axotomy of the central branch. Expression of a9k1 without the central axotomy led to upregulation of a known PNS regeneration program, including many genes associated with peripheral nerve regeneration. Coupling a9k1 treatment with dorsal root axotomy led to extensive central axonal regeneration. In addition to the program upregulated by a9k1 expression, regeneration in the spinal cord led to expression of a distinctive CNS regeneration program, including genes associated with ubiquitination, autophagy, endoplasmic reticulum (ER), trafficking, and signaling. Pharmacological inhibition of these processes blocked the regeneration of axons from DRGs and human iPSC-derived sensory neurons, validating their causal contributions to sensory regeneration. This CNS regeneration-associated program showed little correlation with either embryonic development or PNS regeneration programs. Potential transcriptional drivers of this CNS program coupled to regeneration include Mef2a, Runx3, E2f4, and Yy1. Signaling from integrins primes sensory neurons for regeneration, but their axon growth in the CNS is associated with an additional distinctive program that differs from that involved in PNS regeneration.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000419" target="_blank" >EF15_003/0000419: Centrum rekonstrukčních neurověd</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Neuroscience
ISSN
0270-6474
e-ISSN
1529-2401
Svazek periodika
43
Číslo periodika v rámci svazku
26
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
4775-4794
Kód UT WoS článku
001033553700003
EID výsledku v databázi Scopus
2-s2.0-85164062750