Poly(3-hydroxybutyrate) (PHB) and Polycaprolactone (PCL) Based Blends for Tissue Engineering and Bone Medical Applications Processed by FDM 3D Printing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378041%3A_____%2F23%3A00581654" target="_blank" >RIV/68378041:_____/23:00581654 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26310/23:PU148176
Výsledek na webu
<a href="https://www.mdpi.com/2073-4360/15/10/2404" target="_blank" >https://www.mdpi.com/2073-4360/15/10/2404</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym15102404" target="_blank" >10.3390/polym15102404</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Poly(3-hydroxybutyrate) (PHB) and Polycaprolactone (PCL) Based Blends for Tissue Engineering and Bone Medical Applications Processed by FDM 3D Printing
Popis výsledku v původním jazyce
In the presented work, poly(3-hydroxybutyrate)-PHB-based composite blends for bone medical applications and tissue engineering are prepared and characterized. PHB used for the work was in two cases commercial and, in one case, was extracted by the chloroform-free route. PHB was then blended with poly(lactic acid) (PLA) or polycaprolactone (PCL) and plasticized by oligomeric adipate ester (Syncroflex, SN). Tricalcium phosphate (TCP) particles were used as a bioactive filler. Prepared polymer blends were processed into the form of 3D printing filaments. The samples for all the tests performed were prepared by FDM 3D printing or compression molding. Differential scanning calorimetry was conducted to evaluate the thermal properties, followed by optimization of printing temperature by temperature tower test and determination of warping coefficient. Tensile test, three-point flexural test, and compression test were performed to study the mechanical properties of materials. Optical contact angle measurement was conducted to determine the surface properties of these blends and their influence on cell adhesion. Cytotoxicity measurement of prepared blends was conducted to find out whether the prepared materials were non-cytotoxic. The best temperatures for 3D printing were 195/190, 195/175, and 195/165 degrees C for PHB-soap/PLA-SN, PHB/PCL-SN, and PHB/PCL-SN-TCP, respectively. Their mechanical properties (strengths similar to 40 MPa, moduli similar to 2.5 GPa) were comparable with human trabecular bone. The calculated surface energies of all blends were similar to 40 mN/m. Unfortunately, only two out of three materials were proven to be non-cytotoxic (both PHB/PCL blends).
Název v anglickém jazyce
Poly(3-hydroxybutyrate) (PHB) and Polycaprolactone (PCL) Based Blends for Tissue Engineering and Bone Medical Applications Processed by FDM 3D Printing
Popis výsledku anglicky
In the presented work, poly(3-hydroxybutyrate)-PHB-based composite blends for bone medical applications and tissue engineering are prepared and characterized. PHB used for the work was in two cases commercial and, in one case, was extracted by the chloroform-free route. PHB was then blended with poly(lactic acid) (PLA) or polycaprolactone (PCL) and plasticized by oligomeric adipate ester (Syncroflex, SN). Tricalcium phosphate (TCP) particles were used as a bioactive filler. Prepared polymer blends were processed into the form of 3D printing filaments. The samples for all the tests performed were prepared by FDM 3D printing or compression molding. Differential scanning calorimetry was conducted to evaluate the thermal properties, followed by optimization of printing temperature by temperature tower test and determination of warping coefficient. Tensile test, three-point flexural test, and compression test were performed to study the mechanical properties of materials. Optical contact angle measurement was conducted to determine the surface properties of these blends and their influence on cell adhesion. Cytotoxicity measurement of prepared blends was conducted to find out whether the prepared materials were non-cytotoxic. The best temperatures for 3D printing were 195/190, 195/175, and 195/165 degrees C for PHB-soap/PLA-SN, PHB/PCL-SN, and PHB/PCL-SN-TCP, respectively. Their mechanical properties (strengths similar to 40 MPa, moduli similar to 2.5 GPa) were comparable with human trabecular bone. The calculated surface energies of all blends were similar to 40 mN/m. Unfortunately, only two out of three materials were proven to be non-cytotoxic (both PHB/PCL blends).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30404 - Biomaterials (as related to medical implants, devices, sensors)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Polymers
ISSN
2073-4360
e-ISSN
2073-4360
Svazek periodika
15
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
2404
Kód UT WoS článku
000997733800001
EID výsledku v databázi Scopus
2-s2.0-85160659018