Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nonpher: computational method for design of hard-to-synthesize structures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F17%3A00487327" target="_blank" >RIV/68378050:_____/17:00487327 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22310/17:43914532

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1186/s13321-017-0206-2" target="_blank" >http://dx.doi.org/10.1186/s13321-017-0206-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s13321-017-0206-2" target="_blank" >10.1186/s13321-017-0206-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nonpher: computational method for design of hard-to-synthesize structures

  • Popis výsledku v původním jazyce

    In cheminformatics, machine learning methods are typically used to classify chemical compounds into distinctive classes such as active/nonactive or toxic/nontoxic. To train a classifier, a training data set must consist of examples from both positive and negative classes. While a biological activity or toxicity can be experimentally measured, another important molecular property, a synthetic feasibility, is a more abstract feature that can't be easily assessed. In the present paper, we introduce Nonpher, a computational method for the construction of a hard-to-synthesize virtual library. Nonpher is based on a molecular morphing algorithm in which new structures are iteratively generated by simple structural changes, such as the addition or removal of an atom or a bond. In Nonpher, molecular morphing was optimized so that it yields structures not overly complex, but just right hard-to-synthesize. Nonpher results were compared with SAscore and dense region (DR), other two methods for the generation of hard-to-synthesize compounds. Random forest classifier trained on Nonpher data achieves better results than models obtained using SAscore and DR data.

  • Název v anglickém jazyce

    Nonpher: computational method for design of hard-to-synthesize structures

  • Popis výsledku anglicky

    In cheminformatics, machine learning methods are typically used to classify chemical compounds into distinctive classes such as active/nonactive or toxic/nontoxic. To train a classifier, a training data set must consist of examples from both positive and negative classes. While a biological activity or toxicity can be experimentally measured, another important molecular property, a synthetic feasibility, is a more abstract feature that can't be easily assessed. In the present paper, we introduce Nonpher, a computational method for the construction of a hard-to-synthesize virtual library. Nonpher is based on a molecular morphing algorithm in which new structures are iteratively generated by simple structural changes, such as the addition or removal of an atom or a bond. In Nonpher, molecular morphing was optimized so that it yields structures not overly complex, but just right hard-to-synthesize. Nonpher results were compared with SAscore and dense region (DR), other two methods for the generation of hard-to-synthesize compounds. Random forest classifier trained on Nonpher data achieves better results than models obtained using SAscore and DR data.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Cheminformatics

  • ISSN

    1758-2946

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    březen

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    7

  • Strana od-do

  • Kód UT WoS článku

    000396831100001

  • EID výsledku v databázi Scopus