Nonpher: computational method for design of hard-to-synthesize structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F17%3A00487327" target="_blank" >RIV/68378050:_____/17:00487327 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/17:43914532
Výsledek na webu
<a href="http://dx.doi.org/10.1186/s13321-017-0206-2" target="_blank" >http://dx.doi.org/10.1186/s13321-017-0206-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s13321-017-0206-2" target="_blank" >10.1186/s13321-017-0206-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonpher: computational method for design of hard-to-synthesize structures
Popis výsledku v původním jazyce
In cheminformatics, machine learning methods are typically used to classify chemical compounds into distinctive classes such as active/nonactive or toxic/nontoxic. To train a classifier, a training data set must consist of examples from both positive and negative classes. While a biological activity or toxicity can be experimentally measured, another important molecular property, a synthetic feasibility, is a more abstract feature that can't be easily assessed. In the present paper, we introduce Nonpher, a computational method for the construction of a hard-to-synthesize virtual library. Nonpher is based on a molecular morphing algorithm in which new structures are iteratively generated by simple structural changes, such as the addition or removal of an atom or a bond. In Nonpher, molecular morphing was optimized so that it yields structures not overly complex, but just right hard-to-synthesize. Nonpher results were compared with SAscore and dense region (DR), other two methods for the generation of hard-to-synthesize compounds. Random forest classifier trained on Nonpher data achieves better results than models obtained using SAscore and DR data.
Název v anglickém jazyce
Nonpher: computational method for design of hard-to-synthesize structures
Popis výsledku anglicky
In cheminformatics, machine learning methods are typically used to classify chemical compounds into distinctive classes such as active/nonactive or toxic/nontoxic. To train a classifier, a training data set must consist of examples from both positive and negative classes. While a biological activity or toxicity can be experimentally measured, another important molecular property, a synthetic feasibility, is a more abstract feature that can't be easily assessed. In the present paper, we introduce Nonpher, a computational method for the construction of a hard-to-synthesize virtual library. Nonpher is based on a molecular morphing algorithm in which new structures are iteratively generated by simple structural changes, such as the addition or removal of an atom or a bond. In Nonpher, molecular morphing was optimized so that it yields structures not overly complex, but just right hard-to-synthesize. Nonpher results were compared with SAscore and dense region (DR), other two methods for the generation of hard-to-synthesize compounds. Random forest classifier trained on Nonpher data achieves better results than models obtained using SAscore and DR data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cheminformatics
ISSN
1758-2946
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
březen
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
—
Kód UT WoS článku
000396831100001
EID výsledku v databázi Scopus
—