Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Profiling and analysis of chemical compounds using pointwise mutual information

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F21%3A00554542" target="_blank" >RIV/68378050:_____/21:00554542 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22310/21:43923443

  • Výsledek na webu

    <a href="https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00483-y" target="_blank" >https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00483-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s13321-020-00483-y" target="_blank" >10.1186/s13321-020-00483-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Profiling and analysis of chemical compounds using pointwise mutual information

  • Popis výsledku v původním jazyce

    Pointwise mutual information (PMI) is a measure of association used in information theory. In this paper, PMI is used to characterize several publicly available databases (DrugBank, ChEMBL, PubChem and ZINC) in terms of association strength between compound structural features resulting in database PMI interrelation profiles. As structural features, substructure fragments obtained by coding individual compounds as MACCS, PubChemKey and ECFP fingerprints are used. The analysis of publicly available databases reveals, in accord with other studies, unusual properties of DrugBank compounds which further confirms the validity of PMI profiling approach. Z-standardized relative feature tightness (ZRFT), a PMI-derived measure that quantifies how well the given compound's feature combinations fit these in a particular compound set, is applied for the analysis of compound synthetic accessibility (SA), as well as for the classification of compounds as easy (ES) and hard (HS) to synthesize. ZRFT value distributions are compared with these of SYBA and SAScore. The analysis of ZRFT values of structurally complex compounds in the SAVI database reveals oligopeptide structures that are mispredicted by SAScore as HS, while correctly predicted by ZRFT and SYBA as ES. Compared to SAScore, SYBA and random forest, ZRFT predictions are less accurate, though by a narrow margin (Acc(ZRFT) = 94.5%, Acc(SYBA) = 98.8%, Acc(SAScore) = 99.0%, Acc(RF) = 97.3%). However, ZRFT ability to distinguish between ES and HS compounds is surprisingly high considering that while SYBA, SAScore and random forest are dedicated SA models, ZRFT is a generic measurement that merely quantifies the strength of interrelations between structural feature pairs. The results presented in the current work indicate that structural feature co-occurrence, quantified by PMI or ZRFT, contains a significant amount of information relevant to physico-chemical properties of organic compounds.

  • Název v anglickém jazyce

    Profiling and analysis of chemical compounds using pointwise mutual information

  • Popis výsledku anglicky

    Pointwise mutual information (PMI) is a measure of association used in information theory. In this paper, PMI is used to characterize several publicly available databases (DrugBank, ChEMBL, PubChem and ZINC) in terms of association strength between compound structural features resulting in database PMI interrelation profiles. As structural features, substructure fragments obtained by coding individual compounds as MACCS, PubChemKey and ECFP fingerprints are used. The analysis of publicly available databases reveals, in accord with other studies, unusual properties of DrugBank compounds which further confirms the validity of PMI profiling approach. Z-standardized relative feature tightness (ZRFT), a PMI-derived measure that quantifies how well the given compound's feature combinations fit these in a particular compound set, is applied for the analysis of compound synthetic accessibility (SA), as well as for the classification of compounds as easy (ES) and hard (HS) to synthesize. ZRFT value distributions are compared with these of SYBA and SAScore. The analysis of ZRFT values of structurally complex compounds in the SAVI database reveals oligopeptide structures that are mispredicted by SAScore as HS, while correctly predicted by ZRFT and SYBA as ES. Compared to SAScore, SYBA and random forest, ZRFT predictions are less accurate, though by a narrow margin (Acc(ZRFT) = 94.5%, Acc(SYBA) = 98.8%, Acc(SAScore) = 99.0%, Acc(RF) = 97.3%). However, ZRFT ability to distinguish between ES and HS compounds is surprisingly high considering that while SYBA, SAScore and random forest are dedicated SA models, ZRFT is a generic measurement that merely quantifies the strength of interrelations between structural feature pairs. The results presented in the current work indicate that structural feature co-occurrence, quantified by PMI or ZRFT, contains a significant amount of information relevant to physico-chemical properties of organic compounds.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10608 - Biochemistry and molecular biology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018130" target="_blank" >LM2018130: Národní infrastruktura chemické biologie</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Cheminformatics

  • ISSN

    1758-2946

  • e-ISSN

    1758-2946

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

    3

  • Kód UT WoS článku

    000609194500002

  • EID výsledku v databázi Scopus