Signal-background separation and energy reconstruction of gamma rays using pattern spectra and convolutional neural networks for the Small-Sized Telescopes of the Cherenkov Telescope Array
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A90247%2F24%3A00604760" target="_blank" >RIV/68378271:90247/24:00604760 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.nima.2023.168942" target="_blank" >https://doi.org/10.1016/j.nima.2023.168942</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nima.2023.168942" target="_blank" >10.1016/j.nima.2023.168942</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Signal-background separation and energy reconstruction of gamma rays using pattern spectra and convolutional neural networks for the Small-Sized Telescopes of the Cherenkov Telescope Array
Popis výsledku v původním jazyce
Imaging Atmospheric Cherenkov Telescopes (IACTs) detect very-high-energy gamma rays from ground level by capturing the Cherenkov light of the induced particle showers. Convolutional neural networks (CNNs) can be trained on IACT camera images of such events to differentiate the signal from the background and to reconstruct the energy of the initial gamma ray. Pattern spectra provide a 2-dimensional histogram of the sizes and shapes of features comprising an image and they can be used as an input for a CNN to significantly reduce the computational power required to train it. In this work, we generate pattern spectra from simulated gamma-ray and proton images to train a CNN for signal-background separation and energy reconstruction for the Small-Sized Telescopes (SSTs) of the Cherenkov Telescope Array (CTA).
Název v anglickém jazyce
Signal-background separation and energy reconstruction of gamma rays using pattern spectra and convolutional neural networks for the Small-Sized Telescopes of the Cherenkov Telescope Array
Popis výsledku anglicky
Imaging Atmospheric Cherenkov Telescopes (IACTs) detect very-high-energy gamma rays from ground level by capturing the Cherenkov light of the induced particle showers. Convolutional neural networks (CNNs) can be trained on IACT camera images of such events to differentiate the signal from the background and to reconstruct the energy of the initial gamma ray. Pattern spectra provide a 2-dimensional histogram of the sizes and shapes of features comprising an image and they can be used as an input for a CNN to significantly reduce the computational power required to train it. In this work, we generate pattern spectra from simulated gamma-ray and proton images to train a CNN for signal-background separation and energy reconstruction for the Small-Sized Telescopes (SSTs) of the Cherenkov Telescope Array (CTA).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10303 - Particles and field physics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nuclear Instruments & Methods in Physics Research Section A
ISSN
0168-9002
e-ISSN
1872-9576
Svazek periodika
1059
Číslo periodika v rámci svazku
Feb
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
168942
Kód UT WoS článku
001128192000001
EID výsledku v databázi Scopus
2-s2.0-85178488947