Structure of a laser-driven radiative shock
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F15%3A00521445" target="_blank" >RIV/68378271:_____/15:00521445 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.hedp.2015.01.003" target="_blank" >https://doi.org/10.1016/j.hedp.2015.01.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.hedp.2015.01.003" target="_blank" >10.1016/j.hedp.2015.01.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structure of a laser-driven radiative shock
Popis výsledku v původním jazyce
Radiative shocks are ubiquitous in stellar environments and are characterized by high temperature plasma emitting a considerable fraction of their energy as radiation. The physical structure of these shocks is complex and experimental benchmarks are needed to provide a deeper understanding of the physics at play. In addition, experiments provide unique data for testing radiation hydrodynamics codes which, in turn, are used to model astrophysical phenomena. Radiative shocks have been studied on various high-energy laser facilities for more than a decade, highlighting the importance of radiation on the plasma dynamics. Particularly the PALS facility has focused in producing radiative shocks with typical velocities of ∼50–60 km s−1 in xenon at a fraction of a bar. In addition PALS has the unique capability of producing the most powerful XUV laser available today (21.2 nm (58.4 eV), 0.15 ns), opening the door to new diagnostics of dense plasmas.
Název v anglickém jazyce
Structure of a laser-driven radiative shock
Popis výsledku anglicky
Radiative shocks are ubiquitous in stellar environments and are characterized by high temperature plasma emitting a considerable fraction of their energy as radiation. The physical structure of these shocks is complex and experimental benchmarks are needed to provide a deeper understanding of the physics at play. In addition, experiments provide unique data for testing radiation hydrodynamics codes which, in turn, are used to model astrophysical phenomena. Radiative shocks have been studied on various high-energy laser facilities for more than a decade, highlighting the importance of radiation on the plasma dynamics. Particularly the PALS facility has focused in producing radiative shocks with typical velocities of ∼50–60 km s−1 in xenon at a fraction of a bar. In addition PALS has the unique capability of producing the most powerful XUV laser available today (21.2 nm (58.4 eV), 0.15 ns), opening the door to new diagnostics of dense plasmas.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0061" target="_blank" >ED1.1.00/02.0061: ELI: EXTREME LIGHT INFRASTRUCTURE</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
High energy density physics
ISSN
1574-1818
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
Dec
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
106-113
Kód UT WoS článku
000366571800017
EID výsledku v databázi Scopus
2-s2.0-84945484680