High dynamic stiffness mechanical structures with nanostructured composite coatings deposited by high power impulse magnetron sputtering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F16%3A00458886" target="_blank" >RIV/68378271:_____/16:00458886 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.carbon.2015.10.074" target="_blank" >http://dx.doi.org/10.1016/j.carbon.2015.10.074</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.carbon.2015.10.074" target="_blank" >10.1016/j.carbon.2015.10.074</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High dynamic stiffness mechanical structures with nanostructured composite coatings deposited by high power impulse magnetron sputtering
Popis výsledku v původním jazyce
Nanostructured Cu:CuCNx composite coatings with high static and dynamic stiffness were synthesized by means of plasma-enhanced chemical vapor deposition (PECVD) combined with high power impulse magnetron sputtering (HiPIMS). Scanning electron microscope (SEM) images and energy-dispersive X-ray spectroscopy (EDS) mapping from cross-sectioned samples reveals a multi-layered nanostructure enriched in Cu, C, N, and O in different ratios. Mechanical properties of the coatings were investigated by Vickers micro-indention and model tests. It was observed that copper inclusions as well as copper interlayers in the CNx matrix can increase mechanical damping by up to 160%. Mechanical properties such as hardness, elastic modulus and loss factor were significantly improved by increasing the discharge power of the sputtering process. Moreover the coatings loss modulus was evaluated on the basis of indentation creep measurements under room temperature.
Název v anglickém jazyce
High dynamic stiffness mechanical structures with nanostructured composite coatings deposited by high power impulse magnetron sputtering
Popis výsledku anglicky
Nanostructured Cu:CuCNx composite coatings with high static and dynamic stiffness were synthesized by means of plasma-enhanced chemical vapor deposition (PECVD) combined with high power impulse magnetron sputtering (HiPIMS). Scanning electron microscope (SEM) images and energy-dispersive X-ray spectroscopy (EDS) mapping from cross-sectioned samples reveals a multi-layered nanostructure enriched in Cu, C, N, and O in different ratios. Mechanical properties of the coatings were investigated by Vickers micro-indention and model tests. It was observed that copper inclusions as well as copper interlayers in the CNx matrix can increase mechanical damping by up to 160%. Mechanical properties such as hardness, elastic modulus and loss factor were significantly improved by increasing the discharge power of the sputtering process. Moreover the coatings loss modulus was evaluated on the basis of indentation creep measurements under room temperature.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BL - Fyzika plasmatu a výboje v plynech
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Carbon
ISSN
0008-6223
e-ISSN
—
Svazek periodika
98
Číslo periodika v rámci svazku
Mar
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
24-33
Kód UT WoS článku
000367233000003
EID výsledku v databázi Scopus
2-s2.0-84955307996