Magnetoelectric effect in antiferromagnetic multiferroic Pb(Fe1/2 N b1/2)O3 and its solid solutions with PbTi O3
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F17%3A00473841" target="_blank" >RIV/68378271:_____/17:00473841 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1103/PhysRevB.95.014207" target="_blank" >http://dx.doi.org/10.1103/PhysRevB.95.014207</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.95.014207" target="_blank" >10.1103/PhysRevB.95.014207</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Magnetoelectric effect in antiferromagnetic multiferroic Pb(Fe1/2 N b1/2)O3 and its solid solutions with PbTi O3
Popis výsledku v původním jazyce
Antiferromagnets (AFMs) are presently considered as promising materials for applications in spintronics and random access memories due to the robustness of information stored in the AFM state against perturbing magnetic fields. In this respect, AFM multiferroics may be attractive alternatives for conventional AFMs as the coupling of magnetism with ferroelectricity (magnetoelectric effect) offers an elegant possibility of electric-field control and switching of AFM domains. Here we report the results of comprehensive experimental and theoretical investigations of the quadratic magnetoelectric (ME) effect in single crystals and highly resistive ceramics of Pb(Fe1/2Nb1/2)O3 (PFN) and (1-x)Pb(Fe1/2Nb1/2)O3-xPbTiO3(PFN-xPT). We are interested primarily in the temperature range of the multiferroic phase, T<150K, where the ME coupling coefficient is extremely large (as compared to the well-known multiferroic BiFeO3) and shows sign reversal at the paramagnetic-to-antiferromagnetic phase transition. Moreover, we observe strong ME response nonlinearity in the AFM phase in the magnetic fields of only a few kOe. To describe the temperature and magnetic field dependencies of the above unusual features of the ME effect in PFN and PFN-xPT, we use a simple phenomenological Landau approach which explains experimental data surprisingly well. Our ME measurements demonstrate that the electric field of only 20-25 kV/cm is able to switch the AFM domains and align them with ferroelectric ones even in PFN ceramic samples.
Název v anglickém jazyce
Magnetoelectric effect in antiferromagnetic multiferroic Pb(Fe1/2 N b1/2)O3 and its solid solutions with PbTi O3
Popis výsledku anglicky
Antiferromagnets (AFMs) are presently considered as promising materials for applications in spintronics and random access memories due to the robustness of information stored in the AFM state against perturbing magnetic fields. In this respect, AFM multiferroics may be attractive alternatives for conventional AFMs as the coupling of magnetism with ferroelectricity (magnetoelectric effect) offers an elegant possibility of electric-field control and switching of AFM domains. Here we report the results of comprehensive experimental and theoretical investigations of the quadratic magnetoelectric (ME) effect in single crystals and highly resistive ceramics of Pb(Fe1/2Nb1/2)O3 (PFN) and (1-x)Pb(Fe1/2Nb1/2)O3-xPbTiO3(PFN-xPT). We are interested primarily in the temperature range of the multiferroic phase, T<150K, where the ME coupling coefficient is extremely large (as compared to the well-known multiferroic BiFeO3) and shows sign reversal at the paramagnetic-to-antiferromagnetic phase transition. Moreover, we observe strong ME response nonlinearity in the AFM phase in the magnetic fields of only a few kOe. To describe the temperature and magnetic field dependencies of the above unusual features of the ME effect in PFN and PFN-xPT, we use a simple phenomenological Landau approach which explains experimental data surprisingly well. Our ME measurements demonstrate that the electric field of only 20-25 kV/cm is able to switch the AFM domains and align them with ferroelectric ones even in PFN ceramic samples.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review. B
ISSN
1098-0121
e-ISSN
—
Svazek periodika
95
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85012194067