Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Spin texture motion in antiferromagnetic and ferromagnetic nanowires

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F17%3A00484641" target="_blank" >RIV/68378271:_____/17:00484641 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1103/PhysRevB.95.174408" target="_blank" >http://dx.doi.org/10.1103/PhysRevB.95.174408</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevB.95.174408" target="_blank" >10.1103/PhysRevB.95.174408</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Spin texture motion in antiferromagnetic and ferromagnetic nanowires

  • Popis výsledku v původním jazyce

    We propose a Hamiltonian dynamics formalism for the current and magnetic field driven dynamics of ferromagnetic and antiferromagnetic domain walls in one-dimensional systems. To demonstrate the power of this formalism, we derive Hamilton equations of motion via Poisson brackets based on the Landau-Lifshitz-Gilbert phenomenology, and add dissipative dynamics via the evolution of the energy. We use this approach to study current induced domain-wall motion and compute the drift velocity. For the antiferromagnetic case, we show that a nonzero magnetic moment is induced in the domain wall, which indicates that an additional application of a magnetic field would influence the antiferromagnetic domain-wall dynamics. We consider both cases of the magnetic field being parallel and transverse to the Neel field. Based on this formalism, we predict an orientation switch mechanism for antiferromagnetic domain walls which can be tested with the recently discovered Neel spin orbit torques.

  • Název v anglickém jazyce

    Spin texture motion in antiferromagnetic and ferromagnetic nanowires

  • Popis výsledku anglicky

    We propose a Hamiltonian dynamics formalism for the current and magnetic field driven dynamics of ferromagnetic and antiferromagnetic domain walls in one-dimensional systems. To demonstrate the power of this formalism, we derive Hamilton equations of motion via Poisson brackets based on the Landau-Lifshitz-Gilbert phenomenology, and add dissipative dynamics via the evolution of the energy. We use this approach to study current induced domain-wall motion and compute the drift velocity. For the antiferromagnetic case, we show that a nonzero magnetic moment is induced in the domain wall, which indicates that an additional application of a magnetic field would influence the antiferromagnetic domain-wall dynamics. We consider both cases of the magnetic field being parallel and transverse to the Neel field. Based on this formalism, we predict an orientation switch mechanism for antiferromagnetic domain walls which can be tested with the recently discovered Neel spin orbit torques.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GB14-37427G" target="_blank" >GB14-37427G: Centrum spintroniky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review B

  • ISSN

    2469-9950

  • e-ISSN

  • Svazek periodika

    95

  • Číslo periodika v rámci svazku

    17

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    7

  • Strana od-do

  • Kód UT WoS článku

    000401223700001

  • EID výsledku v databázi Scopus

    2-s2.0-85024403846