Recovering P(X) from a canonical complex field
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F18%3A00502164" target="_blank" >RIV/68378271:_____/18:00502164 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1088/1475-7516/2018/11/023" target="_blank" >http://dx.doi.org/10.1088/1475-7516/2018/11/023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1475-7516/2018/11/023" target="_blank" >10.1088/1475-7516/2018/11/023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recovering P(X) from a canonical complex field
Popis výsledku v původním jazyce
We study the correspondence between models of a self-interacting canonical complex scalar field and P(X)-theories/shift-symmetric k-essence. Both describe the same background cosmological dynamics, provided that the amplitude of the complex scalar is frozen modulo the Hubble drag. We compare perturbations in these two theories on top of a fixed cosmological background. The dispersion relation for the complex scalar has two branches. In the small momentum limit, one of these branches coincides with the dispersion relation of the P(X)-theory. Hence, the low momentum phase velocity agrees with the sound speed in the corresponding P(X)-theory. The behavior of high frequency modes associated with the second branch of the dispersion relation depends on the value of the sound speed. In the subluminal case, the second branch has a mass gap. On the contrary, in the superluminal case, this branch is vulnerable to a tachyonic instability..
Název v anglickém jazyce
Recovering P(X) from a canonical complex field
Popis výsledku anglicky
We study the correspondence between models of a self-interacting canonical complex scalar field and P(X)-theories/shift-symmetric k-essence. Both describe the same background cosmological dynamics, provided that the amplitude of the complex scalar is frozen modulo the Hubble drag. We compare perturbations in these two theories on top of a fixed cosmological background. The dispersion relation for the complex scalar has two branches. In the small momentum limit, one of these branches coincides with the dispersion relation of the P(X)-theory. Hence, the low momentum phase velocity agrees with the sound speed in the corresponding P(X)-theory. The behavior of high frequency modes associated with the second branch of the dispersion relation depends on the value of the sound speed. In the subluminal case, the second branch has a mass gap. On the contrary, in the superluminal case, this branch is vulnerable to a tachyonic instability..
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000437" target="_blank" >EF15_003/0000437: Kosmologie, gravitace a temný sektor vesmíru</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cosmology and Astroparticle Physics
ISSN
1475-7516
e-ISSN
—
Svazek periodika
2018
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
24
Strana od-do
1-24
Kód UT WoS článku
000450309900002
EID výsledku v databázi Scopus
2-s2.0-85057610012