A deep learning-based reconstruction of cosmic ray-induced air showers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F18%3A00547191" target="_blank" >RIV/68378271:_____/18:00547191 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.astropartphys.2017.10.006" target="_blank" >https://doi.org/10.1016/j.astropartphys.2017.10.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.astropartphys.2017.10.006" target="_blank" >10.1016/j.astropartphys.2017.10.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A deep learning-based reconstruction of cosmic ray-induced air showers
Popis výsledku v původním jazyce
We describe a method of reconstructing air showers induced by cosmic rays using deep learning techniques. We simulate an observatory consisting of ground-based particle detectors with fixed locations on a regular grid. The detector's responses to traversing shower particles are signal amplitudes as a function of time, which provide information on transverse and longitudinal shower properties. In order to take advantage of convolutional network techniques specialized in local pattern recognition, we convert all information to the image-like grid of the detectors. In this way, multiple features, such as arrival times of the first particles and optimized characterizations of time traces, are processed by the network. The reconstruction quality of the cosmic ray arrival direction turns out to be competitive with an analytic reconstruction algorithm. The reconstructed shower direction, energy and shower depth show the expected improvement in resolution for higher cosmic ray energy.
Název v anglickém jazyce
A deep learning-based reconstruction of cosmic ray-induced air showers
Popis výsledku anglicky
We describe a method of reconstructing air showers induced by cosmic rays using deep learning techniques. We simulate an observatory consisting of ground-based particle detectors with fixed locations on a regular grid. The detector's responses to traversing shower particles are signal amplitudes as a function of time, which provide information on transverse and longitudinal shower properties. In order to take advantage of convolutional network techniques specialized in local pattern recognition, we convert all information to the image-like grid of the detectors. In this way, multiple features, such as arrival times of the first particles and optimized characterizations of time traces, are processed by the network. The reconstruction quality of the cosmic ray arrival direction turns out to be competitive with an analytic reconstruction algorithm. The reconstructed shower direction, energy and shower depth show the expected improvement in resolution for higher cosmic ray energy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10303 - Particles and field physics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astroparticle Physics
ISSN
0927-6505
e-ISSN
1873-2852
Svazek periodika
97
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
46-53
Kód UT WoS článku
000423640700007
EID výsledku v databázi Scopus
2-s2.0-85034647911