Multiscale experimental study and modeling of L-glutamic acid crystallization: emphasis on a kinetic explanation of the ostwald rule of stages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F19%3A00508097" target="_blank" >RIV/68378271:_____/19:00508097 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1021/acs.cgd.9b00217" target="_blank" >https://doi.org/10.1021/acs.cgd.9b00217</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.cgd.9b00217" target="_blank" >10.1021/acs.cgd.9b00217</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiscale experimental study and modeling of L-glutamic acid crystallization: emphasis on a kinetic explanation of the ostwald rule of stages
Popis výsledku v původním jazyce
This work presents an experimental and a numerical study to highlight a kinetic explanation of the Ostwald rule of stages (ORS). To demonstrate this explanation, l-glutamic acid (LGlu) (a monotropic system with two polymorphs) was crystallized in three different scales: liter scale in a 2 L stirred crystallizer, milliliter scale in a 4 mL stagnant cell, and microliter scale in microfluidic channels. The LGlu polymorphic system was found to follow the ORS at low temperature (between 5 and 30 °C). However, in similar operating conditions, the stable polymorph crystallized preferentially or exclusively in the stagnant cell and in microfluidics. To explain the ORS in the stirred crystallizer at low temperature, a model based on the kinetic equation was used. The numerical results showed that the Gibbs–Thomson effect is a key factor in polymorph competition and that considering this effect, in certain kinetic and equilibrium conditions, could allow explaining and simulating the ORS.
Název v anglickém jazyce
Multiscale experimental study and modeling of L-glutamic acid crystallization: emphasis on a kinetic explanation of the ostwald rule of stages
Popis výsledku anglicky
This work presents an experimental and a numerical study to highlight a kinetic explanation of the Ostwald rule of stages (ORS). To demonstrate this explanation, l-glutamic acid (LGlu) (a monotropic system with two polymorphs) was crystallized in three different scales: liter scale in a 2 L stirred crystallizer, milliliter scale in a 4 mL stagnant cell, and microliter scale in microfluidic channels. The LGlu polymorphic system was found to follow the ORS at low temperature (between 5 and 30 °C). However, in similar operating conditions, the stable polymorph crystallized preferentially or exclusively in the stagnant cell and in microfluidics. To explain the ORS in the stirred crystallizer at low temperature, a model based on the kinetic equation was used. The numerical results showed that the Gibbs–Thomson effect is a key factor in polymorph competition and that considering this effect, in certain kinetic and equilibrium conditions, could allow explaining and simulating the ORS.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/LD15004" target="_blank" >LD15004: Kinetika nukleace krystalů v uzavřených systémech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Crystal Growth & Design
ISSN
1528-7483
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
3329-3337
Kód UT WoS článku
000470938700030
EID výsledku v databázi Scopus
2-s2.0-85065761185