Experimental measurement of the Hilbert-Schmidt distance between two-qubit states as a means for reducing the complexity of machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F19%3A00520175" target="_blank" >RIV/68378271:_____/19:00520175 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/19:73597417
Výsledek na webu
<a href="https://doi.org/10.1103/physrevlett.123.260501" target="_blank" >https://doi.org/10.1103/physrevlett.123.260501</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevLett.123.260501" target="_blank" >10.1103/PhysRevLett.123.260501</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimental measurement of the Hilbert-Schmidt distance between two-qubit states as a means for reducing the complexity of machine learning
Popis výsledku v původním jazyce
We report on the experimental measurement of the Hilbert-Schmidt distance between two two-qubit states by many-particle interference. We demonstrate that our three-step method for measuring distances in the Hilbert space is far less complex than reconstructing density matrices and that it can be applied in quantum-enhanced machine learning to reduce the complexity of calculating Euclidean distances between multidimensional points, which can be especially interesting for near term quantum technologies and quantum artificial intelligence research. Our results are also a novel example of applying mixed states in quantum information processing. Usually working with mixed states is undesired, but here it gives the possibility of encoding extra information as the degree of coherence between the given two dimensions of the density matrix.n
Název v anglickém jazyce
Experimental measurement of the Hilbert-Schmidt distance between two-qubit states as a means for reducing the complexity of machine learning
Popis výsledku anglicky
We report on the experimental measurement of the Hilbert-Schmidt distance between two two-qubit states by many-particle interference. We demonstrate that our three-step method for measuring distances in the Hilbert space is far less complex than reconstructing density matrices and that it can be applied in quantum-enhanced machine learning to reduce the complexity of calculating Euclidean distances between multidimensional points, which can be especially interesting for near term quantum technologies and quantum artificial intelligence research. Our results are also a novel example of applying mixed states in quantum information processing. Usually working with mixed states is undesired, but here it gives the possibility of encoding extra information as the degree of coherence between the given two dimensions of the density matrix.n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review Letters
ISSN
0031-9007
e-ISSN
—
Svazek periodika
123
Číslo periodika v rámci svazku
26
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
1-6
Kód UT WoS článku
000504647000002
EID výsledku v databázi Scopus
2-s2.0-85077334785