Neutrino interaction classification with a convolutional neural network in the DUNE far detector
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F20%3A00537337" target="_blank" >RIV/68378271:_____/20:00537337 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/20:00344032 RIV/00216208:11320/20:10422129
Výsledek na webu
<a href="http://hdl.handle.net/11104/0315059" target="_blank" >http://hdl.handle.net/11104/0315059</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.102.092003" target="_blank" >10.1103/PhysRevD.102.092003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
Popis výsledku v původním jazyce
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.n
Název v anglickém jazyce
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
Popis výsledku anglicky
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10303 - Particles and field physics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
—
Svazek periodika
102
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
000587596500004
EID výsledku v databázi Scopus
2-s2.0-85096669682