Emergence of spin-orbit torques in 2D transition metal dichalcogenides: A status update
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F20%3A00539194" target="_blank" >RIV/68378271:_____/20:00539194 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1063/5.0025318" target="_blank" >https://doi.org/10.1063/5.0025318</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0025318" target="_blank" >10.1063/5.0025318</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Emergence of spin-orbit torques in 2D transition metal dichalcogenides: A status update
Popis výsledku v původním jazyce
Spin–orbit coupling (SOC) in two-dimensional (2D) materials has emerged as a powerful tool for designing spintronic devices. On the one hand, the interest in this respect for graphene, the most popular 2D material with numerous fascinating and exciting properties, is fading due to the absence of SOC. On the other hand, 2D transition metal dichalcogenides (TMDs) are known to exhibit rich physics including large SOC. TMDs have been used for decades in a variety of applications such as nano-electronics, photonics, optoelectronics, sensing, and recently also in spintronics. Here, we review the current progress in research on 2D TMDs for generating spin–orbit torques in spin-logic devices. Several challenges connecting to thin film growth, film thickness, layer symmetry, and transport properties and their impact on the efficiency of spintronic devices are reviewed. How different TMDs generate spin–orbit torques in magnetic heterostructures is discussed in detail. Relevant aspects for improving the quality of the thin film growth as well as the efficiency of the generated spin–orbit torques are discussed together with future perspectives in the field of spin-orbitronics.n
Název v anglickém jazyce
Emergence of spin-orbit torques in 2D transition metal dichalcogenides: A status update
Popis výsledku anglicky
Spin–orbit coupling (SOC) in two-dimensional (2D) materials has emerged as a powerful tool for designing spintronic devices. On the one hand, the interest in this respect for graphene, the most popular 2D material with numerous fascinating and exciting properties, is fading due to the absence of SOC. On the other hand, 2D transition metal dichalcogenides (TMDs) are known to exhibit rich physics including large SOC. TMDs have been used for decades in a variety of applications such as nano-electronics, photonics, optoelectronics, sensing, and recently also in spintronics. Here, we review the current progress in research on 2D TMDs for generating spin–orbit torques in spin-logic devices. Several challenges connecting to thin film growth, film thickness, layer symmetry, and transport properties and their impact on the efficiency of spintronic devices are reviewed. How different TMDs generate spin–orbit torques in magnetic heterostructures is discussed in detail. Relevant aspects for improving the quality of the thin film growth as well as the efficiency of the generated spin–orbit torques are discussed together with future perspectives in the field of spin-orbitronics.n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Physics Reviews
ISSN
1931-9401
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
1-27
Kód UT WoS článku
000600335200002
EID výsledku v databázi Scopus
2-s2.0-85097629409