Impact of cation multiplicity on halide perovskite defect densities and solar cell voltages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F20%3A00541706" target="_blank" >RIV/68378271:_____/20:00541706 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/20:00345155 RIV/00216208:11320/20:10422142
Výsledek na webu
<a href="https://doi.org/10.1021/acs.jpcc.0c08193" target="_blank" >https://doi.org/10.1021/acs.jpcc.0c08193</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.0c08193" target="_blank" >10.1021/acs.jpcc.0c08193</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of cation multiplicity on halide perovskite defect densities and solar cell voltages
Popis výsledku v původním jazyce
Metal-halide perovskites feature very low deep-defect densities, thereby enabling high operating voltages at the solar cell level. Here, by precise extraction of their absorption spectra, we find that the low deep-defect density is unaffected when cations such as Cs+ and Rb+ are added during the perovskite synthesis. By comparing single crystals and polycrystalline thin films of methylammonium lead iodide/bromide, we find these defects to be predominantly localized at surfaces and grain boundaries. Furthermore, generally, for the most important photovoltaic materials, we demonstrate a strong correlation between their Urbach energy and open-circuit voltage deficiency at the solar cell level. Through external quantum yield photoluminescence efficiency measurements, we explain these results as a consequence of nonradiative open-circuit voltage losses in the solar cell. Finally, we define practical power conversion efficiency limits of solar cells by taking into account the Urbach energy.
Název v anglickém jazyce
Impact of cation multiplicity on halide perovskite defect densities and solar cell voltages
Popis výsledku anglicky
Metal-halide perovskites feature very low deep-defect densities, thereby enabling high operating voltages at the solar cell level. Here, by precise extraction of their absorption spectra, we find that the low deep-defect density is unaffected when cations such as Cs+ and Rb+ are added during the perovskite synthesis. By comparing single crystals and polycrystalline thin films of methylammonium lead iodide/bromide, we find these defects to be predominantly localized at surfaces and grain boundaries. Furthermore, generally, for the most important photovoltaic materials, we demonstrate a strong correlation between their Urbach energy and open-circuit voltage deficiency at the solar cell level. Through external quantum yield photoluminescence efficiency measurements, we explain these results as a consequence of nonradiative open-circuit voltage losses in the solar cell. Finally, we define practical power conversion efficiency limits of solar cells by taking into account the Urbach energy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
1932-7455
Svazek periodika
124
Číslo periodika v rámci svazku
50
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
27333-27339
Kód UT WoS článku
000608876900008
EID výsledku v databázi Scopus
2-s2.0-85097802922