Data-driven detection of multimessenger transients
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F20%3A00546364" target="_blank" >RIV/68378271:_____/20:00546364 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3847/2041-8213/ab8b5f" target="_blank" >https://doi.org/10.3847/2041-8213/ab8b5f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/2041-8213/ab8b5f" target="_blank" >10.3847/2041-8213/ab8b5f</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data-driven detection of multimessenger transients
Popis výsledku v původním jazyce
The primary challenge in the study of explosive astrophysical transients is their detection and characterization using multiple messengers. For this purpose, we have developed a new data-driven discovery framework, based on deep learning. We demonstrate its use for searches involving neutrinos, optical supernovae, and gamma-rays. We show that we can match or substantially improve upon the performance of state-of-the-art techniques, while significantly minimizing the dependence on modeling and on instrument characterization. Particularly, our approach is intended for near- and real-time analyses, which are essential for effective follow-up of detections. Our algorithm is designed to combine a range of instruments and types of input data, representing different messengers, physical regimes, and temporal scales. The methodology is optimized for agnostic searches of unexpected phenomena, and has the potential to substantially enhance their discovery prospects.
Název v anglickém jazyce
Data-driven detection of multimessenger transients
Popis výsledku anglicky
The primary challenge in the study of explosive astrophysical transients is their detection and characterization using multiple messengers. For this purpose, we have developed a new data-driven discovery framework, based on deep learning. We demonstrate its use for searches involving neutrinos, optical supernovae, and gamma-rays. We show that we can match or substantially improve upon the performance of state-of-the-art techniques, while significantly minimizing the dependence on modeling and on instrument characterization. Particularly, our approach is intended for near- and real-time analyses, which are essential for effective follow-up of detections. Our algorithm is designed to combine a range of instruments and types of input data, representing different messengers, physical regimes, and temporal scales. The methodology is optimized for agnostic searches of unexpected phenomena, and has the potential to substantially enhance their discovery prospects.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10303 - Particles and field physics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astrophysical Journal Letters
ISSN
2041-8205
e-ISSN
2041-8213
Svazek periodika
894
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
L25
Kód UT WoS článku
000536137000001
EID výsledku v databázi Scopus
2-s2.0-85086221804