Self-focusing of a spatially modulated beam within the paraxial complex geometrical optics framework in low-density plasmas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F21%3A00552139" target="_blank" >RIV/68378271:_____/21:00552139 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1361-6587/ac2e43" target="_blank" >https://doi.org/10.1088/1361-6587/ac2e43</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6587/ac2e43" target="_blank" >10.1088/1361-6587/ac2e43</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-focusing of a spatially modulated beam within the paraxial complex geometrical optics framework in low-density plasmas
Popis výsledku v původním jazyce
Accurate modelling of ponderomotive laser self-focusing may represent a key for the success of inertial confinement fusion, especially within the shock ignition approach. From a numerical point of view, implementation of a paraxial complex geometrical optics (PCGO) method has improved the performance of the hydrodynamics code CHIC, but (1) overestimating ponderomotive speckle self-focusing in reduced two-dimensional geometry, and (2) not accounting for speckle intensity statistics. The first issue was addressed in our previous work (Ruocco et al 2019 Plasma Phys. Control. Fusion 61 115009). Based on those results, here we propose a novel PCGO scheme for modelling spatially modulated laser beams by (1) creating Gaussian speckles, and (2) emulating the realistic speckle intensity statistics. Self-focusing of spatially modulated beams in a homogeneous stationary plasma with this method is studied. This investigation evidences that plasma smoothing does not reduce the speckle intensity enhancement at long time scales when the average beam intensity is twice above the speckle critical intensity.
Název v anglickém jazyce
Self-focusing of a spatially modulated beam within the paraxial complex geometrical optics framework in low-density plasmas
Popis výsledku anglicky
Accurate modelling of ponderomotive laser self-focusing may represent a key for the success of inertial confinement fusion, especially within the shock ignition approach. From a numerical point of view, implementation of a paraxial complex geometrical optics (PCGO) method has improved the performance of the hydrodynamics code CHIC, but (1) overestimating ponderomotive speckle self-focusing in reduced two-dimensional geometry, and (2) not accounting for speckle intensity statistics. The first issue was addressed in our previous work (Ruocco et al 2019 Plasma Phys. Control. Fusion 61 115009). Based on those results, here we propose a novel PCGO scheme for modelling spatially modulated laser beams by (1) creating Gaussian speckles, and (2) emulating the realistic speckle intensity statistics. Self-focusing of spatially modulated beams in a homogeneous stationary plasma with this method is studied. This investigation evidences that plasma smoothing does not reduce the speckle intensity enhancement at long time scales when the average beam intensity is twice above the speckle critical intensity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1606" target="_blank" >LQ1606: ELI Beamlines: Mezinárodní centrum Excelemce</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Plasma Physics and Controlled Fusion
ISSN
0741-3335
e-ISSN
1361-6587
Svazek periodika
63
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
125019
Kód UT WoS článku
000717255000001
EID výsledku v databázi Scopus
2-s2.0-85120780489