Erbium ion implantation into LiNbO3, Al2O3, ZnO and diamond - measurement and modelling - an overview
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F22%3A00560216" target="_blank" >RIV/68378271:_____/22:00560216 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61389005:_____/22:00560216 RIV/44555601:13440/22:43897158 RIV/60461373:22310/22:43925594
Výsledek na webu
<a href="https://doi.org/10.1039/D2CP01803A" target="_blank" >https://doi.org/10.1039/D2CP01803A</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d2cp01803a" target="_blank" >10.1039/d2cp01803a</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Erbium ion implantation into LiNbO3, Al2O3, ZnO and diamond - measurement and modelling - an overview
Popis výsledku v původním jazyce
The presented overview deals with the study of the luminescence properties of lanthanide ions incorporated into different dielectric crystalline materials for use in photonics and optoelectronics. From the crystalline materials, non-centrosymmetric hexagonal crystals of LiNbO3, Al2O3 and ZnO, together with the centrosymmetric cubic crystal of diamond, were chosen. The above-mentioned materials represent a certain cross-section through various crystal structure geometries with different internal bonding of atoms which represent different crystal vicinity for the incorporated Er ions. During more than ten years of our research, each of the crystals was doped with erbium ions and the resulting structural and luminescence properties were studied in detail and compared between the mentioned crystalline materials to find similar behaviour for erbium ions in the different crystalline materials. To better understand the incorporation of erbium in the studied crystalline materials, theoretical simulations of different erbium-doped crystal models were carried out. In the calculations, cohesive energies of the structures and erbium defect-formation energies were compared in order to find the most favourable erbium positions in the crystals. Also, from the geometry optimization calculations, the optimal geometry arrangements in the vicinity of erbium ions in different crystals were studied and visualized. The results of the theoretical simulations confirmed the experimental results - i.e., from all the theoretical erbium-doped crystal models, the most stable structures contained erbium in the substitutional positions with octahedral oxygen coordination.
Název v anglickém jazyce
Erbium ion implantation into LiNbO3, Al2O3, ZnO and diamond - measurement and modelling - an overview
Popis výsledku anglicky
The presented overview deals with the study of the luminescence properties of lanthanide ions incorporated into different dielectric crystalline materials for use in photonics and optoelectronics. From the crystalline materials, non-centrosymmetric hexagonal crystals of LiNbO3, Al2O3 and ZnO, together with the centrosymmetric cubic crystal of diamond, were chosen. The above-mentioned materials represent a certain cross-section through various crystal structure geometries with different internal bonding of atoms which represent different crystal vicinity for the incorporated Er ions. During more than ten years of our research, each of the crystals was doped with erbium ions and the resulting structural and luminescence properties were studied in detail and compared between the mentioned crystalline materials to find similar behaviour for erbium ions in the different crystalline materials. To better understand the incorporation of erbium in the studied crystalline materials, theoretical simulations of different erbium-doped crystal models were carried out. In the calculations, cohesive energies of the structures and erbium defect-formation energies were compared in order to find the most favourable erbium positions in the crystals. Also, from the geometry optimization calculations, the optimal geometry arrangements in the vicinity of erbium ions in different crystals were studied and visualized. The results of the theoretical simulations confirmed the experimental results - i.e., from all the theoretical erbium-doped crystal models, the most stable structures contained erbium in the substitutional positions with octahedral oxygen coordination.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001812" target="_blank" >EF16_013/0001812: Centrum urychlovačů a jaderných analytických metod - OP</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
1463-9084
Svazek periodika
24
Číslo periodika v rámci svazku
32
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
19052-19072
Kód UT WoS článku
000837732400001
EID výsledku v databázi Scopus
2-s2.0-85136172574