The discrepancy between the indentation curves obtained by the finite element method calculation with a Berkovich and a conical indenter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F22%3A00565030" target="_blank" >RIV/68378271:_____/22:00565030 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388998:_____/22:00565030 RIV/61989592:15310/22:73613735 RIV/00216305:26210/22:PU144532
Výsledek na webu
<a href="https://link.springer.com/article/10.1557/s43578-022-00574-6" target="_blank" >https://link.springer.com/article/10.1557/s43578-022-00574-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1557/s43578-022-00574-6" target="_blank" >10.1557/s43578-022-00574-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The discrepancy between the indentation curves obtained by the finite element method calculation with a Berkovich and a conical indenter
Popis výsledku v původním jazyce
Nanoindentation is an experimental technique used for the determination of Young modulus. The commonly used Oliver-Pharr analysis based on the assumption of the equivalence of indentation curves obtained with a Berkovich and a conical indenter is employed. Nevertheless, a break-down of this equivalence in projected area between the pyramidal and conical geometry was found. This discrepancy leads to an overestimation of Young modulus and needs to be corrected with coefficient β. It corrects the difference between Young modulus from the conical and the Berkovich indentation but cannot correct the indentation curves. This paper aims at the FEM study of modelling of the nanoindentation test, the influence of the Oliver-Pharr analysis assumptions, the comparison and unification of the different values of β for the Berkovich and the conical indentation with a rigid and a diamond indenter, the correction of the indentation curves, and the explanation of the differences between the FEM calculated and experimentally measured indentation curves.
Název v anglickém jazyce
The discrepancy between the indentation curves obtained by the finite element method calculation with a Berkovich and a conical indenter
Popis výsledku anglicky
Nanoindentation is an experimental technique used for the determination of Young modulus. The commonly used Oliver-Pharr analysis based on the assumption of the equivalence of indentation curves obtained with a Berkovich and a conical indenter is employed. Nevertheless, a break-down of this equivalence in projected area between the pyramidal and conical geometry was found. This discrepancy leads to an overestimation of Young modulus and needs to be corrected with coefficient β. It corrects the difference between Young modulus from the conical and the Berkovich indentation but cannot correct the indentation curves. This paper aims at the FEM study of modelling of the nanoindentation test, the influence of the Oliver-Pharr analysis assumptions, the comparison and unification of the different values of β for the Berkovich and the conical indentation with a rigid and a diamond indenter, the correction of the indentation curves, and the explanation of the differences between the FEM calculated and experimentally measured indentation curves.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Research
ISSN
0884-2914
e-ISSN
2044-5326
Svazek periodika
37
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
1750-1761
Kód UT WoS článku
000792534400002
EID výsledku v databázi Scopus
2-s2.0-85129702688