Diffusion in a binary mixture of molecules adsorbed on a multisite two-dimensional lattice
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F22%3A00567845" target="_blank" >RIV/68378271:_____/22:00567845 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.seppur.2022.121984" target="_blank" >https://doi.org/10.1016/j.seppur.2022.121984</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.seppur.2022.121984" target="_blank" >10.1016/j.seppur.2022.121984</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Diffusion in a binary mixture of molecules adsorbed on a multisite two-dimensional lattice
Popis výsledku v původním jazyce
The diffusion in a binary mixture of species coadsorbed on a multisite square lattice is investigated by a theoretical approach (Chumak and Tarasenko, 1980) based on the non-equilibrium statistical operator method proposed by Zubarev (1961). The investigated lattice gas system is rather complex. There is a mixture of two types of particles (atoms, and/or molecules) adsorbed on a multisite lattice which consists of the three types of adsorption sites. This lattice can be subdivided onto three homogeneous square sublattices composed of the sites of the same type. As the binding energies for the molecules of distinct types adsorbed on the nonidentical sublattices are different, there are six average occupancies (coverages) describing the molecule distribution over the sublattices. A system of the balance equations, which controls the exchange of the molecules between the sublattices on the atomistic level is reduced to the diffusion equations describing the evolution of small hydrodynamic fluctuations of these coverages on the macroscopic level. The diffusion equations are written in the Onsager representation, when the driving forces are gradients of the chemical potentials and in the Fickian representation, when the driving forces are the gradients of coverages. The derivation of these equations results in the analytical expressions for the Fickian diffusivities and Onsager phenomenological coefficients. Despite the complex process of derivation, the final results are simple.
Název v anglickém jazyce
Diffusion in a binary mixture of molecules adsorbed on a multisite two-dimensional lattice
Popis výsledku anglicky
The diffusion in a binary mixture of species coadsorbed on a multisite square lattice is investigated by a theoretical approach (Chumak and Tarasenko, 1980) based on the non-equilibrium statistical operator method proposed by Zubarev (1961). The investigated lattice gas system is rather complex. There is a mixture of two types of particles (atoms, and/or molecules) adsorbed on a multisite lattice which consists of the three types of adsorption sites. This lattice can be subdivided onto three homogeneous square sublattices composed of the sites of the same type. As the binding energies for the molecules of distinct types adsorbed on the nonidentical sublattices are different, there are six average occupancies (coverages) describing the molecule distribution over the sublattices. A system of the balance equations, which controls the exchange of the molecules between the sublattices on the atomistic level is reduced to the diffusion equations describing the evolution of small hydrodynamic fluctuations of these coverages on the macroscopic level. The diffusion equations are written in the Onsager representation, when the driving forces are gradients of the chemical potentials and in the Fickian representation, when the driving forces are the gradients of coverages. The derivation of these equations results in the analytical expressions for the Fickian diffusivities and Onsager phenomenological coefficients. Despite the complex process of derivation, the final results are simple.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Separation and Purification Technology
ISSN
1383-5866
e-ISSN
1873-3794
Svazek periodika
302
Číslo periodika v rámci svazku
Dec
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
121984
Kód UT WoS článku
000875818300003
EID výsledku v databázi Scopus
2-s2.0-85138819708