Revealing nonclassicality of multiphoton optical beams via artificial neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00598466" target="_blank" >RIV/68378271:_____/24:00598466 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/24:73626520
Výsledek na webu
<a href="https://hdl.handle.net/11104/0356130" target="_blank" >https://hdl.handle.net/11104/0356130</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevApplied.22.034048" target="_blank" >10.1103/PhysRevApplied.22.034048</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Revealing nonclassicality of multiphoton optical beams via artificial neural networks
Popis výsledku v původním jazyce
The identification of nonclassical features of multiphoton quantum states represents a task of the utmost importance in the development of many quantum photonic technologies. Under realistic experimental conditions, a photonic quantum state gets affected by its interaction with several nonideal opto-electronic devices, including those used to guide, detect or characterize it. The result of such noisy interaction is that the nonclassical features of the original quantum state get considerably reduced or are completely absent in the detected, final state. In this work, the self-learning features of artificial neural networks are exploited to experimentally show that the nonclassicality of multiphoton quantum states can be assessed and fully characterized, even in the cases in which the nonclassical features are concealed by the measuring devices. Our work paves the way toward artificial-intelligence-assisted experimental-setup characterization, as well as smart quantum-state nonclassicality identification.
Název v anglickém jazyce
Revealing nonclassicality of multiphoton optical beams via artificial neural networks
Popis výsledku anglicky
The identification of nonclassical features of multiphoton quantum states represents a task of the utmost importance in the development of many quantum photonic technologies. Under realistic experimental conditions, a photonic quantum state gets affected by its interaction with several nonideal opto-electronic devices, including those used to guide, detect or characterize it. The result of such noisy interaction is that the nonclassical features of the original quantum state get considerably reduced or are completely absent in the detected, final state. In this work, the self-learning features of artificial neural networks are exploited to experimentally show that the nonclassicality of multiphoton quantum states can be assessed and fully characterized, even in the cases in which the nonclassical features are concealed by the measuring devices. Our work paves the way toward artificial-intelligence-assisted experimental-setup characterization, as well as smart quantum-state nonclassicality identification.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004596" target="_blank" >EH22_008/0004596: Senzory a detektory pro informační společnost budoucnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review Applied
ISSN
2331-7019
e-ISSN
2331-7019
Svazek periodika
22
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
034048
Kód UT WoS článku
001329205400001
EID výsledku v databázi Scopus
2-s2.0-85204797914