Compliant Lattice Modulations Enable Anomalous Elasticity in Ni-Mn-Ga Martensite
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00598952" target="_blank" >RIV/68378271:_____/24:00598952 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388998:_____/24:00598952 RIV/68407700:21340/24:00378091
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/adma.202406672" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/adma.202406672</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adma.202406672" target="_blank" >10.1002/adma.202406672</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Compliant Lattice Modulations Enable Anomalous Elasticity in Ni-Mn-Ga Martensite
Popis výsledku v původním jazyce
High mobility of twin boundaries in modulated martensites of Ni–Mn–Ga-based ferromagnetic shape memory alloys holds a promise for unique magnetomechanical applications. This feature has not been fully understood so far, and in particular, it has yet not been unveiled what makes the lattice mechanics of modulated Ni–Mn–Ga specifically different from other martensitic alloys. Here, results of dedicated laser-ultrasonic measurements on hierarchically twinned five-layer modulated (10M) crystals fill this gap. Using a combination of transient grating spectroscopy and laser-based resonant ultrasound spectroscopy, it is confirmed that there is a shear elastic instability in the lattice, being significantly stronger than in any other martensitic material and also than what the first-principles calculations for Ni–Mn–Ga predict. The experimental results reveal that the instability is directly related to the lattice modulations. A lattice-scale mechanism of dynamic faulting of the modulation sequence that explains this behavior is proposed, this mechanism can explain the extraordinary mobility of twin boundaries in 10M.
Název v anglickém jazyce
Compliant Lattice Modulations Enable Anomalous Elasticity in Ni-Mn-Ga Martensite
Popis výsledku anglicky
High mobility of twin boundaries in modulated martensites of Ni–Mn–Ga-based ferromagnetic shape memory alloys holds a promise for unique magnetomechanical applications. This feature has not been fully understood so far, and in particular, it has yet not been unveiled what makes the lattice mechanics of modulated Ni–Mn–Ga specifically different from other martensitic alloys. Here, results of dedicated laser-ultrasonic measurements on hierarchically twinned five-layer modulated (10M) crystals fill this gap. Using a combination of transient grating spectroscopy and laser-based resonant ultrasound spectroscopy, it is confirmed that there is a shear elastic instability in the lattice, being significantly stronger than in any other martensitic material and also than what the first-principles calculations for Ni–Mn–Ga predict. The experimental results reveal that the instability is directly related to the lattice modulations. A lattice-scale mechanism of dynamic faulting of the modulation sequence that explains this behavior is proposed, this mechanism can explain the extraordinary mobility of twin boundaries in 10M.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Materials
ISSN
0935-9648
e-ISSN
1521-4095
Svazek periodika
36
Číslo periodika v rámci svazku
39
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
2406672
Kód UT WoS článku
001288420900001
EID výsledku v databázi Scopus
2-s2.0-85200991594