Automating data classification for label-free point-of-care biosensing in real complex samples
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00599585" target="_blank" >RIV/68378271:_____/24:00599585 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0357035" target="_blank" >https://hdl.handle.net/11104/0357035</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sna.2024.115501" target="_blank" >10.1016/j.sna.2024.115501</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automating data classification for label-free point-of-care biosensing in real complex samples
Popis výsledku v původním jazyce
Surface-based affinity biosensors present a promising avenue for point-of-care (POC) pathogen detection in real-world samples. This paper introduces a procedure for automatically classifying pathogen presence in unprocessed liquids from direct detection data measured by a simple POC quartz crystal microbalance sensor device. We show that the developed procedure exhibits exceptional robustness across different biosensing assays and complex real-world media. Through optimizing parameters using diverse datasets encompassing Escherichia coli O157:H7 (E. coli) and SARS-CoV-2 detection in various media, we achieved rates of successful detection as high as 80.8 % and 90.9 % for E. coli and SARS-CoV-2, respectively, without extensive machine learning. Our results suggest that this exceptionally robust method holds potential as a straightforward tool for automating sample classification in point-of-care diagnostics, underpinning its promising broader applicability.
Název v anglickém jazyce
Automating data classification for label-free point-of-care biosensing in real complex samples
Popis výsledku anglicky
Surface-based affinity biosensors present a promising avenue for point-of-care (POC) pathogen detection in real-world samples. This paper introduces a procedure for automatically classifying pathogen presence in unprocessed liquids from direct detection data measured by a simple POC quartz crystal microbalance sensor device. We show that the developed procedure exhibits exceptional robustness across different biosensing assays and complex real-world media. Through optimizing parameters using diverse datasets encompassing Escherichia coli O157:H7 (E. coli) and SARS-CoV-2 detection in various media, we achieved rates of successful detection as high as 80.8 % and 90.9 % for E. coli and SARS-CoV-2, respectively, without extensive machine learning. Our results suggest that this exceptionally robust method holds potential as a straightforward tool for automating sample classification in point-of-care diagnostics, underpinning its promising broader applicability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors and Actuators A - Physical
ISSN
0924-4247
e-ISSN
1873-3069
Svazek periodika
374
Číslo periodika v rámci svazku
Aug
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
115501
Kód UT WoS článku
001246546400001
EID výsledku v databázi Scopus
2-s2.0-85194105928