Critical reassessment of the restricted Weyl symmetry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00603401" target="_blank" >RIV/68378271:_____/24:00603401 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0360668" target="_blank" >https://hdl.handle.net/11104/0360668</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.110.125011" target="_blank" >10.1103/PhysRevD.110.125011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Critical reassessment of the restricted Weyl symmetry
Popis výsledku v původním jazyce
A class of globally scale-invariant scalar-tensor theories have been proposed to be invariant under a larger class of transformations that take the form of local Weyl transformations supplemented by a restriction that the conformal factor satisfies a covariant Klein-Gordon equation. The action of these theories indeed seems to be invariant under such transformations up to boundary terms, this property being referred to as “restricted Weyl symmetry.” However, we find that corresponding equations of motion are not invariant under these transformations. This is a paradox, that is explained by realizing that the restriction condition on the conformal factor forces the restricted Weyl transformation to be a nonlocal transformation. For nonlocal transformations would-be boundary terms cannot in general be discarded from the action. Moreover, variations of trajectories cannot be assumed to vanish at boundaries of the action when deriving equations of motion. We illustrate both of these less known properties by considering a series of simple examples. Finally, we apply these observations to the case of globally scale-invariant scalar-tensor theories to demonstrate that restricted Weyl transformations are, in fact, not symmetries of the full system.
Název v anglickém jazyce
Critical reassessment of the restricted Weyl symmetry
Popis výsledku anglicky
A class of globally scale-invariant scalar-tensor theories have been proposed to be invariant under a larger class of transformations that take the form of local Weyl transformations supplemented by a restriction that the conformal factor satisfies a covariant Klein-Gordon equation. The action of these theories indeed seems to be invariant under such transformations up to boundary terms, this property being referred to as “restricted Weyl symmetry.” However, we find that corresponding equations of motion are not invariant under these transformations. This is a paradox, that is explained by realizing that the restriction condition on the conformal factor forces the restricted Weyl transformation to be a nonlocal transformation. For nonlocal transformations would-be boundary terms cannot in general be discarded from the action. Moreover, variations of trajectories cannot be assumed to vanish at boundaries of the action when deriving equations of motion. We illustrate both of these less known properties by considering a series of simple examples. Finally, we apply these observations to the case of globally scale-invariant scalar-tensor theories to demonstrate that restricted Weyl transformations are, in fact, not symmetries of the full system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10303 - Particles and field physics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
110
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
125011
Kód UT WoS článku
001379646100006
EID výsledku v databázi Scopus
2-s2.0-85212407180