Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

π+π- Coulomb interaction study and its use in data processing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00605023" target="_blank" >RIV/68378271:_____/24:00605023 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61389005:_____/24:00605023 RIV/68407700:21340/24:00380590

  • Výsledek na webu

    <a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.092005" target="_blank" >https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.092005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevD.110.092005" target="_blank" >10.1103/PhysRevD.110.092005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    π+π- Coulomb interaction study and its use in data processing

  • Popis výsledku v původním jazyce

    In this work, the Coulomb effects (Coulomb correlations) in pi+pi- pairs produced in p + Ni collisions at 24 GeV=c, are studied using experimental pi+pi- pair distributions in Q, the relative momentum in the pair center-of-mass system (c.m.s.), and its projections Q(L) (longitudinal component) and Q(t) (transverse component) relative to the pair direction in the laboratory system (LS). The major part of the pion pairs ('Coulomb pairs') is produced in the decay of rho, omega and Delta resonances and other short-lived sources. In these pairs, the significant Coulomb interaction occurs at small Q, dominating the pi+pi- interaction in the final state. The minor part of the pairs ('non-Coulomb pairs') is produced if one or both pions arose from long-lived sources like eta, eta ' or from different interactions. In this case, the final state interaction is practically absent. The Q, Q(L), and Q(t) distributions of the Coulomb pairs in the c.m.s. have been simulated assuming they are described by the phase space modified by the known point-like Coulomb correlation function A(C)(Q), corrected for small effects due to the nonpointlike pair production and the strong two-pion interaction. The same distributions of non-Coulomb pairs have been simulated according to the phase space, but without A(C)(Q). In all Q(t) intervals, the experimental Q(L) spectrum shows a peak around Q(L) = 0 caused by the Coulomb final state interaction. The full width at half maximum increases with Q(t) from 3 MeV/c for 0 < Q(t) < 0.25 MeV/c to 11 MeV/c for 4.0 < Q(t) < 5.0 MeV/c. The experimental Q(L) distributions have been fitted with two free parameters: the fraction of Coulomb pairs and the normalization constant. The precision of the description of these distributions is better than 2% in Q(t) intervals 2-3, 3-4, and 4-5 MeV/c and better than 0.5% in the total Q(t) interval 0-5 MeV/c. It is shown that the number of Coulomb pairs in all Q(t) intervals, including the small Q(t) (small opening angles theta in the LS) is calculated with theoretical precision better than 2%. The comparison of the simulated and experimental numbers of Coulomb pairs at small Q(t) allows us to check and correct the detection efficiency for the pairs with small. (0.06 mrad and smaller). It is shown that Coulomb pairs can be used as a new physical tool to check and correct the quality of the simulated events. The special property of the Coulomb pairs is the possibility of checking and correcting the detection efficiency, especially for the pairs with small opening angles.

  • Název v anglickém jazyce

    π+π- Coulomb interaction study and its use in data processing

  • Popis výsledku anglicky

    In this work, the Coulomb effects (Coulomb correlations) in pi+pi- pairs produced in p + Ni collisions at 24 GeV=c, are studied using experimental pi+pi- pair distributions in Q, the relative momentum in the pair center-of-mass system (c.m.s.), and its projections Q(L) (longitudinal component) and Q(t) (transverse component) relative to the pair direction in the laboratory system (LS). The major part of the pion pairs ('Coulomb pairs') is produced in the decay of rho, omega and Delta resonances and other short-lived sources. In these pairs, the significant Coulomb interaction occurs at small Q, dominating the pi+pi- interaction in the final state. The minor part of the pairs ('non-Coulomb pairs') is produced if one or both pions arose from long-lived sources like eta, eta ' or from different interactions. In this case, the final state interaction is practically absent. The Q, Q(L), and Q(t) distributions of the Coulomb pairs in the c.m.s. have been simulated assuming they are described by the phase space modified by the known point-like Coulomb correlation function A(C)(Q), corrected for small effects due to the nonpointlike pair production and the strong two-pion interaction. The same distributions of non-Coulomb pairs have been simulated according to the phase space, but without A(C)(Q). In all Q(t) intervals, the experimental Q(L) spectrum shows a peak around Q(L) = 0 caused by the Coulomb final state interaction. The full width at half maximum increases with Q(t) from 3 MeV/c for 0 < Q(t) < 0.25 MeV/c to 11 MeV/c for 4.0 < Q(t) < 5.0 MeV/c. The experimental Q(L) distributions have been fitted with two free parameters: the fraction of Coulomb pairs and the normalization constant. The precision of the description of these distributions is better than 2% in Q(t) intervals 2-3, 3-4, and 4-5 MeV/c and better than 0.5% in the total Q(t) interval 0-5 MeV/c. It is shown that the number of Coulomb pairs in all Q(t) intervals, including the small Q(t) (small opening angles theta in the LS) is calculated with theoretical precision better than 2%. The comparison of the simulated and experimental numbers of Coulomb pairs at small Q(t) allows us to check and correct the detection efficiency for the pairs with small. (0.06 mrad and smaller). It is shown that Coulomb pairs can be used as a new physical tool to check and correct the quality of the simulated events. The special property of the Coulomb pairs is the possibility of checking and correcting the detection efficiency, especially for the pairs with small opening angles.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10303 - Particles and field physics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review D

  • ISSN

    2470-0010

  • e-ISSN

    2470-0029

  • Svazek periodika

    110

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    092005

  • Kód UT WoS článku

    001381827900001

  • EID výsledku v databázi Scopus

    2-s2.0-85209256373