Strain-induced phase transition from antiferromagnet to altermagnet
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00605214" target="_blank" >RIV/68378271:_____/24:00605214 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevB.109.144421" target="_blank" >https://doi.org/10.1103/PhysRevB.109.144421</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.109.144421" target="_blank" >10.1103/PhysRevB.109.144421</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strain-induced phase transition from antiferromagnet to altermagnet
Popis výsledku v původním jazyce
The newly discovered altermagnets are unconventional collinear compensated magnetic systems, exhibiting even (d, g, or i wave) spin-polarization order in the band structure, setting them apart from conventional collinear ferromagnets and antiferromagnets. Altermagnets offer advantages of spin-polarized current akin to ferromagnets, and THz functionalities similar to antiferromagnets, while introducing new effects like spinsplitter currents. A key challenge for future applications and functionalization of altermagnets is to demonstrate controlled transitioning to the altermagnetic phase from other conventional phases in a single material. Here we prove a viable path toward overcoming this challenge through a strain-induced transition from an antiferromagnetic to an altermagnetic phase in ReO2. Combining spin group symmetry analysis and ab initio calculations, we demonstrate that under compressive strain ReO2 undergoes such transition, lifting the Kramers degeneracy of the band structure of the antiferromagnetic phase in the nonrelativistic regime. In addition, we show that this magnetic transition is accompanied by a metal-insulator transition, and calculate the distinct spin-polarized spectral functions of the two phases, which can be detected in angle-resolved photoemission spectroscopy experiments.
Název v anglickém jazyce
Strain-induced phase transition from antiferromagnet to altermagnet
Popis výsledku anglicky
The newly discovered altermagnets are unconventional collinear compensated magnetic systems, exhibiting even (d, g, or i wave) spin-polarization order in the band structure, setting them apart from conventional collinear ferromagnets and antiferromagnets. Altermagnets offer advantages of spin-polarized current akin to ferromagnets, and THz functionalities similar to antiferromagnets, while introducing new effects like spinsplitter currents. A key challenge for future applications and functionalization of altermagnets is to demonstrate controlled transitioning to the altermagnetic phase from other conventional phases in a single material. Here we prove a viable path toward overcoming this challenge through a strain-induced transition from an antiferromagnetic to an altermagnetic phase in ReO2. Combining spin group symmetry analysis and ab initio calculations, we demonstrate that under compressive strain ReO2 undergoes such transition, lifting the Kramers degeneracy of the band structure of the antiferromagnetic phase in the nonrelativistic regime. In addition, we show that this magnetic transition is accompanied by a metal-insulator transition, and calculate the distinct spin-polarized spectral functions of the two phases, which can be detected in angle-resolved photoemission spectroscopy experiments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-28375X" target="_blank" >GX19-28375X: Terahertzové a neuromorfní paměti založené na antiferomagnetech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review B
ISSN
2469-9950
e-ISSN
2469-9969
Svazek periodika
109
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
144421
Kód UT WoS článku
001250622300002
EID výsledku v databázi Scopus
2-s2.0-85191308998