Volumetric glass modification with Gaussian and doughnut-shaped pulses: From localized laser energy absorption to absorption delocalization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00605687" target="_blank" >RIV/68378271:_____/24:00605687 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12939/3012270/Volumetric-glass-modification-with-Gaussian-and-doughnut-shaped-pulses/10.1117/12.3012270.short" target="_blank" >https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12939/3012270/Volumetric-glass-modification-with-Gaussian-and-doughnut-shaped-pulses/10.1117/12.3012270.short</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.3012270" target="_blank" >10.1117/12.3012270</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Volumetric glass modification with Gaussian and doughnut-shaped pulses: From localized laser energy absorption to absorption delocalization
Popis výsledku v původním jazyce
Volumetric modification of glass materials by ultrashort laser pulses is a powerful technique enabling direct writing of three-dimensional structures for fabrication of optical, photonic, and microfluidic devices. The level of modification is determined by the locally absorbed energy density, which depends on numerous factors. In this work, the effect of the spatial pulse shape on the ultrashort laser excitation of fused silica was investigated experimentally and theoretically for the volumetric modification regimes. We focused on two shapes of laser pulses, Gaussian and doughnut-shaped (DS) ones. It was found that, at relatively low pulse energies, in the range of ~1–5 microjoules, the DS pulses are more efficient in volumetric structural changes than Gaussian pulses. It is explained by the intensity clamping effect for the Gaussian pulses, which leads to the delocalization of the laser energy absorption. In the DS case, this effect is overcome due to the geometry of the focused beam propagation, accompanied by the electron plasma formation, which scatters light toward the beam axis. The thermoelastoplastic modeling performed for the DS pulses revealed intriguing dynamics of the shock waves generated because of tubular-like energy absorption. It is anticipated that such a double shock wave structure can induce the formation of high-pressure polymorphs of transparent materials that can be used for investigations of nonequilibrium thermodynamics of warm dense matter. The DS laser pulses of low energies of the order of 100 nJ which generate a gentle tubular-like modification can be perspective for a miniature waveguide writing in glass.
Název v anglickém jazyce
Volumetric glass modification with Gaussian and doughnut-shaped pulses: From localized laser energy absorption to absorption delocalization
Popis výsledku anglicky
Volumetric modification of glass materials by ultrashort laser pulses is a powerful technique enabling direct writing of three-dimensional structures for fabrication of optical, photonic, and microfluidic devices. The level of modification is determined by the locally absorbed energy density, which depends on numerous factors. In this work, the effect of the spatial pulse shape on the ultrashort laser excitation of fused silica was investigated experimentally and theoretically for the volumetric modification regimes. We focused on two shapes of laser pulses, Gaussian and doughnut-shaped (DS) ones. It was found that, at relatively low pulse energies, in the range of ~1–5 microjoules, the DS pulses are more efficient in volumetric structural changes than Gaussian pulses. It is explained by the intensity clamping effect for the Gaussian pulses, which leads to the delocalization of the laser energy absorption. In the DS case, this effect is overcome due to the geometry of the focused beam propagation, accompanied by the electron plasma formation, which scatters light toward the beam axis. The thermoelastoplastic modeling performed for the DS pulses revealed intriguing dynamics of the shock waves generated because of tubular-like energy absorption. It is anticipated that such a double shock wave structure can induce the formation of high-pressure polymorphs of transparent materials that can be used for investigations of nonequilibrium thermodynamics of warm dense matter. The DS laser pulses of low energies of the order of 100 nJ which generate a gentle tubular-like modification can be perspective for a miniature waveguide writing in glass.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004596" target="_blank" >EH22_008/0004596: Senzory a detektory pro informační společnost budoucnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of SPIE
ISBN
978-151067184-3
ISSN
0277-786X
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1293903
Název nakladatele
SPIE
Místo vydání
Bellingham
Místo konání akce
Santa Fe
Datum konání akce
26. 2. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001260005400002