Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Volumetric glass modification with Gaussian and doughnut-shaped pulses: From localized laser energy absorption to absorption delocalization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00605687" target="_blank" >RIV/68378271:_____/24:00605687 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12939/3012270/Volumetric-glass-modification-with-Gaussian-and-doughnut-shaped-pulses/10.1117/12.3012270.short" target="_blank" >https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12939/3012270/Volumetric-glass-modification-with-Gaussian-and-doughnut-shaped-pulses/10.1117/12.3012270.short</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.3012270" target="_blank" >10.1117/12.3012270</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Volumetric glass modification with Gaussian and doughnut-shaped pulses: From localized laser energy absorption to absorption delocalization

  • Popis výsledku v původním jazyce

    Volumetric modification of glass materials by ultrashort laser pulses is a powerful technique enabling direct writing of three-dimensional structures for fabrication of optical, photonic, and microfluidic devices. The level of modification is determined by the locally absorbed energy density, which depends on numerous factors. In this work, the effect of the spatial pulse shape on the ultrashort laser excitation of fused silica was investigated experimentally and theoretically for the volumetric modification regimes. We focused on two shapes of laser pulses, Gaussian and doughnut-shaped (DS) ones. It was found that, at relatively low pulse energies, in the range of ~1–5 microjoules, the DS pulses are more efficient in volumetric structural changes than Gaussian pulses. It is explained by the intensity clamping effect for the Gaussian pulses, which leads to the delocalization of the laser energy absorption. In the DS case, this effect is overcome due to the geometry of the focused beam propagation, accompanied by the electron plasma formation, which scatters light toward the beam axis. The thermoelastoplastic modeling performed for the DS pulses revealed intriguing dynamics of the shock waves generated because of tubular-like energy absorption. It is anticipated that such a double shock wave structure can induce the formation of high-pressure polymorphs of transparent materials that can be used for investigations of nonequilibrium thermodynamics of warm dense matter. The DS laser pulses of low energies of the order of 100 nJ which generate a gentle tubular-like modification can be perspective for a miniature waveguide writing in glass.

  • Název v anglickém jazyce

    Volumetric glass modification with Gaussian and doughnut-shaped pulses: From localized laser energy absorption to absorption delocalization

  • Popis výsledku anglicky

    Volumetric modification of glass materials by ultrashort laser pulses is a powerful technique enabling direct writing of three-dimensional structures for fabrication of optical, photonic, and microfluidic devices. The level of modification is determined by the locally absorbed energy density, which depends on numerous factors. In this work, the effect of the spatial pulse shape on the ultrashort laser excitation of fused silica was investigated experimentally and theoretically for the volumetric modification regimes. We focused on two shapes of laser pulses, Gaussian and doughnut-shaped (DS) ones. It was found that, at relatively low pulse energies, in the range of ~1–5 microjoules, the DS pulses are more efficient in volumetric structural changes than Gaussian pulses. It is explained by the intensity clamping effect for the Gaussian pulses, which leads to the delocalization of the laser energy absorption. In the DS case, this effect is overcome due to the geometry of the focused beam propagation, accompanied by the electron plasma formation, which scatters light toward the beam axis. The thermoelastoplastic modeling performed for the DS pulses revealed intriguing dynamics of the shock waves generated because of tubular-like energy absorption. It is anticipated that such a double shock wave structure can induce the formation of high-pressure polymorphs of transparent materials that can be used for investigations of nonequilibrium thermodynamics of warm dense matter. The DS laser pulses of low energies of the order of 100 nJ which generate a gentle tubular-like modification can be perspective for a miniature waveguide writing in glass.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EH22_008%2F0004596" target="_blank" >EH22_008/0004596: Senzory a detektory pro informační společnost budoucnosti</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of SPIE

  • ISBN

    978-151067184-3

  • ISSN

    0277-786X

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    1293903

  • Název nakladatele

    SPIE

  • Místo vydání

    Bellingham

  • Místo konání akce

    Santa Fe

  • Datum konání akce

    26. 2. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001260005400002