Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Highlights about the performances of storm-time TEC modelling techniques for low/equatorial and mid-latitude locations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F19%3A00505529" target="_blank" >RIV/68378289:_____/19:00505529 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S027311771930047X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S027311771930047X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asr.2019.01.027" target="_blank" >10.1016/j.asr.2019.01.027</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Highlights about the performances of storm-time TEC modelling techniques for low/equatorial and mid-latitude locations

  • Popis výsledku v původním jazyce

    A statistical evaluation of storm-time total electron content (TEC) modelling techniques over various latitudes of the African sector and surrounding areas is presented. The source of observational TEC data used in this study is the Global Navigation Satellite Systems (GNSS), specifically the Global Positioning Systems (GPS) receiver networks. For each selected receiver station, three different storm time models based on empirical orthogonal functions (EOF) analysis, non-linear regression analysis (NLRA) and Artificial neural networks (ANN), were implemented. Storm-time GPS TEC data used for both development and validation of the models was selected based on the storm criterion of Dst <= -50 nT or K-p >= 4 to take into account both coronal mass ejections (CMEs) and co-rotating interaction regions (CIRs) driven storms, respectively. To make an independent test of the models, storm periods considered for validation were excluded from datasets used during the implementation of the models and results are compared with observations, monthly median values, and International Reference Ionosphere (IRI-2016) predictions. Considering GPS TEC as reference, a statistical analysis performed over six storm periods reserved for validation revealed that ANN model is about 10%, 26%, and 58% more accurate than EOF, NLRA, and IRI models, respectively. It was further found that, EOF model performs 15%, and 44% better than NLRA, and IRI models, respectively, while NLRA is 25% better than IRI. On the other hand, results are also discussed referring to the background ionosphere represented by monthly median TEC (MM TEC) and statistics are provided. Moreover, strengths and weaknesses of each model are highlighted. (C) 2019 COSPAR. Published by Elsevier Ltd. All rights reserved.

  • Název v anglickém jazyce

    Highlights about the performances of storm-time TEC modelling techniques for low/equatorial and mid-latitude locations

  • Popis výsledku anglicky

    A statistical evaluation of storm-time total electron content (TEC) modelling techniques over various latitudes of the African sector and surrounding areas is presented. The source of observational TEC data used in this study is the Global Navigation Satellite Systems (GNSS), specifically the Global Positioning Systems (GPS) receiver networks. For each selected receiver station, three different storm time models based on empirical orthogonal functions (EOF) analysis, non-linear regression analysis (NLRA) and Artificial neural networks (ANN), were implemented. Storm-time GPS TEC data used for both development and validation of the models was selected based on the storm criterion of Dst <= -50 nT or K-p >= 4 to take into account both coronal mass ejections (CMEs) and co-rotating interaction regions (CIRs) driven storms, respectively. To make an independent test of the models, storm periods considered for validation were excluded from datasets used during the implementation of the models and results are compared with observations, monthly median values, and International Reference Ionosphere (IRI-2016) predictions. Considering GPS TEC as reference, a statistical analysis performed over six storm periods reserved for validation revealed that ANN model is about 10%, 26%, and 58% more accurate than EOF, NLRA, and IRI models, respectively. It was further found that, EOF model performs 15%, and 44% better than NLRA, and IRI models, respectively, while NLRA is 25% better than IRI. On the other hand, results are also discussed referring to the background ionosphere represented by monthly median TEC (MM TEC) and statistics are provided. Moreover, strengths and weaknesses of each model are highlighted. (C) 2019 COSPAR. Published by Elsevier Ltd. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Space Research

  • ISSN

    0273-1177

  • e-ISSN

  • Svazek periodika

    63

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    17

  • Strana od-do

    3102-3118

  • Kód UT WoS článku

    000467513600003

  • EID výsledku v databázi Scopus

    2-s2.0-85061647802