Highlights about the performances of storm-time TEC modelling techniques for low/equatorial and mid-latitude locations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F19%3A00505529" target="_blank" >RIV/68378289:_____/19:00505529 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S027311771930047X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S027311771930047X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asr.2019.01.027" target="_blank" >10.1016/j.asr.2019.01.027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Highlights about the performances of storm-time TEC modelling techniques for low/equatorial and mid-latitude locations
Popis výsledku v původním jazyce
A statistical evaluation of storm-time total electron content (TEC) modelling techniques over various latitudes of the African sector and surrounding areas is presented. The source of observational TEC data used in this study is the Global Navigation Satellite Systems (GNSS), specifically the Global Positioning Systems (GPS) receiver networks. For each selected receiver station, three different storm time models based on empirical orthogonal functions (EOF) analysis, non-linear regression analysis (NLRA) and Artificial neural networks (ANN), were implemented. Storm-time GPS TEC data used for both development and validation of the models was selected based on the storm criterion of Dst <= -50 nT or K-p >= 4 to take into account both coronal mass ejections (CMEs) and co-rotating interaction regions (CIRs) driven storms, respectively. To make an independent test of the models, storm periods considered for validation were excluded from datasets used during the implementation of the models and results are compared with observations, monthly median values, and International Reference Ionosphere (IRI-2016) predictions. Considering GPS TEC as reference, a statistical analysis performed over six storm periods reserved for validation revealed that ANN model is about 10%, 26%, and 58% more accurate than EOF, NLRA, and IRI models, respectively. It was further found that, EOF model performs 15%, and 44% better than NLRA, and IRI models, respectively, while NLRA is 25% better than IRI. On the other hand, results are also discussed referring to the background ionosphere represented by monthly median TEC (MM TEC) and statistics are provided. Moreover, strengths and weaknesses of each model are highlighted. (C) 2019 COSPAR. Published by Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Highlights about the performances of storm-time TEC modelling techniques for low/equatorial and mid-latitude locations
Popis výsledku anglicky
A statistical evaluation of storm-time total electron content (TEC) modelling techniques over various latitudes of the African sector and surrounding areas is presented. The source of observational TEC data used in this study is the Global Navigation Satellite Systems (GNSS), specifically the Global Positioning Systems (GPS) receiver networks. For each selected receiver station, three different storm time models based on empirical orthogonal functions (EOF) analysis, non-linear regression analysis (NLRA) and Artificial neural networks (ANN), were implemented. Storm-time GPS TEC data used for both development and validation of the models was selected based on the storm criterion of Dst <= -50 nT or K-p >= 4 to take into account both coronal mass ejections (CMEs) and co-rotating interaction regions (CIRs) driven storms, respectively. To make an independent test of the models, storm periods considered for validation were excluded from datasets used during the implementation of the models and results are compared with observations, monthly median values, and International Reference Ionosphere (IRI-2016) predictions. Considering GPS TEC as reference, a statistical analysis performed over six storm periods reserved for validation revealed that ANN model is about 10%, 26%, and 58% more accurate than EOF, NLRA, and IRI models, respectively. It was further found that, EOF model performs 15%, and 44% better than NLRA, and IRI models, respectively, while NLRA is 25% better than IRI. On the other hand, results are also discussed referring to the background ionosphere represented by monthly median TEC (MM TEC) and statistics are provided. Moreover, strengths and weaknesses of each model are highlighted. (C) 2019 COSPAR. Published by Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Space Research
ISSN
0273-1177
e-ISSN
—
Svazek periodika
63
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
3102-3118
Kód UT WoS článku
000467513600003
EID výsledku v databázi Scopus
2-s2.0-85061647802