High-Spatiotemporal Resolution Observations of Jupiter Lightning-Induced Radio Pulses Associated With Sferics and Thunderstorms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F20%3A00531478" target="_blank" >RIV/68378289:_____/20:00531478 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/20:10423245
Výsledek na webu
<a href="https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088397" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088397</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2020GL088397" target="_blank" >10.1029/2020GL088397</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High-Spatiotemporal Resolution Observations of Jupiter Lightning-Induced Radio Pulses Associated With Sferics and Thunderstorms
Popis výsledku v původním jazyce
Jupiter lightning discharges produce various kinds of phenomena including radio wave pulses at different frequencies. On 6 April 2019, the Juno Waves instrument captured an extraordinary series of radio pulses at frequencies below 150 kHz on timescales of submilliseconds. Quasi‐simultaneous multi‐instrument data show that the locations of their magnetic footprints are very close to the locations of ultrahigh frequency (UHF) sferics recorded by the Juno MWR instrument. Hubble Space Telescope images show that the signature of active convection includes cloud‐free clearings, in addition to the convective towers and deep water clouds that were also recognized in previous spacecraft observations of lightning source regions. Furthermore, the detections of 17 very low frequency/low‐frequency (VLF/LF) radio pulses suggest a minimum duration of lightning processes on the order of submilliseconds. These observations provide new constraints on the physical properties of Jupiter lightning.
Název v anglickém jazyce
High-Spatiotemporal Resolution Observations of Jupiter Lightning-Induced Radio Pulses Associated With Sferics and Thunderstorms
Popis výsledku anglicky
Jupiter lightning discharges produce various kinds of phenomena including radio wave pulses at different frequencies. On 6 April 2019, the Juno Waves instrument captured an extraordinary series of radio pulses at frequencies below 150 kHz on timescales of submilliseconds. Quasi‐simultaneous multi‐instrument data show that the locations of their magnetic footprints are very close to the locations of ultrahigh frequency (UHF) sferics recorded by the Juno MWR instrument. Hubble Space Telescope images show that the signature of active convection includes cloud‐free clearings, in addition to the convective towers and deep water clouds that were also recognized in previous spacecraft observations of lightning source regions. Furthermore, the detections of 17 very low frequency/low‐frequency (VLF/LF) radio pulses suggest a minimum duration of lightning processes on the order of submilliseconds. These observations provide new constraints on the physical properties of Jupiter lightning.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA17070" target="_blank" >LTAUSA17070: Elektromagnetické vlny v planetárních ionosférách a magnetosférách</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geophysical Research Letters
ISSN
0094-8276
e-ISSN
—
Svazek periodika
47
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
e2020GL088397
Kód UT WoS článku
000560376100071
EID výsledku v databázi Scopus
2-s2.0-85089379445