Multievent Study of Characteristics and Propagation of Naturally Occurring ELF/VLF Waves Using High‐Latitude Ground Observations and Conjunctions With the Arase Satellite
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F21%3A00539564" target="_blank" >RIV/68378289:_____/21:00539564 - isvavai.cz</a>
Výsledek na webu
<a href="https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2020JA028682" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2020JA028682</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2020JA028682" target="_blank" >10.1029/2020JA028682</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multievent Study of Characteristics and Propagation of Naturally Occurring ELF/VLF Waves Using High‐Latitude Ground Observations and Conjunctions With the Arase Satellite
Popis výsledku v původním jazyce
We report the properties of the ionospheric exit point and characteristics of several types of very low frequency waves, including chorus and quasiperiodic emissions, based on a comprehensive dataset of simultaneous observations between ground and space. Whistler‐mode waves were observed at Kannuslehto (L = 5.5, KAN), Finland, and in the inner magnetosphere by the Japanese Arase satellite. During the 2017–2018 winter campaign, we found 13 cases showing one‐to‐one correspondence of wave spectra between KAN and Arase. This is the first time that such a large number of conjugated events have been reported at once. The duration of the events ranged from a few minutes up to 3 h, with 90% of events detected in the afternoon sector. While the occurrence rate is higher during daytime, this can also be related to a majority of the detected waves being quasiperiodic emissions, a known dayside phenomenon. Arase was usually located within 30° of the equator, at L ∼4–5, and detected mostly waves propagating at oblique angles (≥20°). Frequently, the ionospheric magnetic footprint of Arase was located equatorwards (south) from KAN, often in the same geographical area. We investigated the probable location of the ionospheric exit point of the waves from the location of the footprint of Arase and the angle of arrival of waves detected at KAN. Using density measurements at Arase we discuss magnetospheric wave propagatio: we find that, in most cases, waves were unducted in their propagation from the satellite to the ground.
Název v anglickém jazyce
Multievent Study of Characteristics and Propagation of Naturally Occurring ELF/VLF Waves Using High‐Latitude Ground Observations and Conjunctions With the Arase Satellite
Popis výsledku anglicky
We report the properties of the ionospheric exit point and characteristics of several types of very low frequency waves, including chorus and quasiperiodic emissions, based on a comprehensive dataset of simultaneous observations between ground and space. Whistler‐mode waves were observed at Kannuslehto (L = 5.5, KAN), Finland, and in the inner magnetosphere by the Japanese Arase satellite. During the 2017–2018 winter campaign, we found 13 cases showing one‐to‐one correspondence of wave spectra between KAN and Arase. This is the first time that such a large number of conjugated events have been reported at once. The duration of the events ranged from a few minutes up to 3 h, with 90% of events detected in the afternoon sector. While the occurrence rate is higher during daytime, this can also be related to a majority of the detected waves being quasiperiodic emissions, a known dayside phenomenon. Arase was usually located within 30° of the equator, at L ∼4–5, and detected mostly waves propagating at oblique angles (≥20°). Frequently, the ionospheric magnetic footprint of Arase was located equatorwards (south) from KAN, often in the same geographical area. We investigated the probable location of the ionospheric exit point of the waves from the location of the footprint of Arase and the angle of arrival of waves detected at KAN. Using density measurements at Arase we discuss magnetospheric wave propagatio: we find that, in most cases, waves were unducted in their propagation from the satellite to the ground.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geophysical Research-Space Physics
ISSN
2169-9380
e-ISSN
2169-9402
Svazek periodika
126
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
e2020JA028682
Kód UT WoS článku
000627265100065
EID výsledku v databázi Scopus
2-s2.0-85102190060