Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A global 3-D electron density reconstruction model based on radio occultation data and neural networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F21%3A00544520" target="_blank" >RIV/68378289:_____/21:00544520 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1364682621001577?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1364682621001577?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jastp.2021.105702" target="_blank" >10.1016/j.jastp.2021.105702</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A global 3-D electron density reconstruction model based on radio occultation data and neural networks

  • Popis výsledku v původním jazyce

    The accurate representation of the ionospheric electron density in 3-dimensions is a challenging problem because of the nature of horizontal and vertical structures on both small and large scales. This paper presents the development of a global three-dimensional (3-D) electron density reconstruction based on radio occultation data during 2006-2019 and neural networks. We demonstrate that the developed model based on COSMIC dataset only is capable of reproducing different ionospheric features when compared to independent datasets from ionosondes and incoherent scatter radars (ISR) in low, middle and high latitude regions. Following some existing modelling efforts based on similar or related datasets and technique we divided the problem into fine resolution grid cells of 5 degrees x15 degrees (geographic latitudes/longitudes) followed by development of the neural network subroutine per cell and later combining all the 864 sub-models to compile one global model. This approach has been demonstrated to be appropriate in enabling neural networks to learn, reproduce and generalise local and global behaviour of the ionospheric electron density. Based on ISR data, the 3D model improves maximum electron density of the F2 layer (NmF2) prediction by 10%-20% compared to IRI 2016 model during quiet conditions. For estimation of ionosonde ordinary critical frequency of the F2 layer (foF2) in 2009 at 1200 UT (universal time), the developed 3-D model gives average root mean square error (RMSE) values of 0.83 MHz, 1.06 MHz and 1.16 MHz compared to the IRI 2016 values of 0.92 MHz, 1.09 MHz and 1.01 MHz over the Africa-European, American and Asian sectors respectively making their performances statistically comparable. Compared to ionosonde data, the IRI 2016 model consistently shows a better performance for the hmF2 modelling results in almost all sectors during the investigated periods.

  • Název v anglickém jazyce

    A global 3-D electron density reconstruction model based on radio occultation data and neural networks

  • Popis výsledku anglicky

    The accurate representation of the ionospheric electron density in 3-dimensions is a challenging problem because of the nature of horizontal and vertical structures on both small and large scales. This paper presents the development of a global three-dimensional (3-D) electron density reconstruction based on radio occultation data during 2006-2019 and neural networks. We demonstrate that the developed model based on COSMIC dataset only is capable of reproducing different ionospheric features when compared to independent datasets from ionosondes and incoherent scatter radars (ISR) in low, middle and high latitude regions. Following some existing modelling efforts based on similar or related datasets and technique we divided the problem into fine resolution grid cells of 5 degrees x15 degrees (geographic latitudes/longitudes) followed by development of the neural network subroutine per cell and later combining all the 864 sub-models to compile one global model. This approach has been demonstrated to be appropriate in enabling neural networks to learn, reproduce and generalise local and global behaviour of the ionospheric electron density. Based on ISR data, the 3D model improves maximum electron density of the F2 layer (NmF2) prediction by 10%-20% compared to IRI 2016 model during quiet conditions. For estimation of ionosonde ordinary critical frequency of the F2 layer (foF2) in 2009 at 1200 UT (universal time), the developed 3-D model gives average root mean square error (RMSE) values of 0.83 MHz, 1.06 MHz and 1.16 MHz compared to the IRI 2016 values of 0.92 MHz, 1.09 MHz and 1.01 MHz over the Africa-European, American and Asian sectors respectively making their performances statistically comparable. Compared to ionosonde data, the IRI 2016 model consistently shows a better performance for the hmF2 modelling results in almost all sectors during the investigated periods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Atmospheric and Solar-Terrestrial Physics

  • ISSN

    1364-6826

  • e-ISSN

    1879-1824

  • Svazek periodika

    221

  • Číslo periodika v rámci svazku

    15 Sept

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    105702

  • Kód UT WoS článku

    000672855100003

  • EID výsledku v databázi Scopus

    2-s2.0-85108300827