A global 3-D electron density reconstruction model based on radio occultation data and neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F21%3A00544520" target="_blank" >RIV/68378289:_____/21:00544520 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1364682621001577?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1364682621001577?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jastp.2021.105702" target="_blank" >10.1016/j.jastp.2021.105702</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A global 3-D electron density reconstruction model based on radio occultation data and neural networks
Popis výsledku v původním jazyce
The accurate representation of the ionospheric electron density in 3-dimensions is a challenging problem because of the nature of horizontal and vertical structures on both small and large scales. This paper presents the development of a global three-dimensional (3-D) electron density reconstruction based on radio occultation data during 2006-2019 and neural networks. We demonstrate that the developed model based on COSMIC dataset only is capable of reproducing different ionospheric features when compared to independent datasets from ionosondes and incoherent scatter radars (ISR) in low, middle and high latitude regions. Following some existing modelling efforts based on similar or related datasets and technique we divided the problem into fine resolution grid cells of 5 degrees x15 degrees (geographic latitudes/longitudes) followed by development of the neural network subroutine per cell and later combining all the 864 sub-models to compile one global model. This approach has been demonstrated to be appropriate in enabling neural networks to learn, reproduce and generalise local and global behaviour of the ionospheric electron density. Based on ISR data, the 3D model improves maximum electron density of the F2 layer (NmF2) prediction by 10%-20% compared to IRI 2016 model during quiet conditions. For estimation of ionosonde ordinary critical frequency of the F2 layer (foF2) in 2009 at 1200 UT (universal time), the developed 3-D model gives average root mean square error (RMSE) values of 0.83 MHz, 1.06 MHz and 1.16 MHz compared to the IRI 2016 values of 0.92 MHz, 1.09 MHz and 1.01 MHz over the Africa-European, American and Asian sectors respectively making their performances statistically comparable. Compared to ionosonde data, the IRI 2016 model consistently shows a better performance for the hmF2 modelling results in almost all sectors during the investigated periods.
Název v anglickém jazyce
A global 3-D electron density reconstruction model based on radio occultation data and neural networks
Popis výsledku anglicky
The accurate representation of the ionospheric electron density in 3-dimensions is a challenging problem because of the nature of horizontal and vertical structures on both small and large scales. This paper presents the development of a global three-dimensional (3-D) electron density reconstruction based on radio occultation data during 2006-2019 and neural networks. We demonstrate that the developed model based on COSMIC dataset only is capable of reproducing different ionospheric features when compared to independent datasets from ionosondes and incoherent scatter radars (ISR) in low, middle and high latitude regions. Following some existing modelling efforts based on similar or related datasets and technique we divided the problem into fine resolution grid cells of 5 degrees x15 degrees (geographic latitudes/longitudes) followed by development of the neural network subroutine per cell and later combining all the 864 sub-models to compile one global model. This approach has been demonstrated to be appropriate in enabling neural networks to learn, reproduce and generalise local and global behaviour of the ionospheric electron density. Based on ISR data, the 3D model improves maximum electron density of the F2 layer (NmF2) prediction by 10%-20% compared to IRI 2016 model during quiet conditions. For estimation of ionosonde ordinary critical frequency of the F2 layer (foF2) in 2009 at 1200 UT (universal time), the developed 3-D model gives average root mean square error (RMSE) values of 0.83 MHz, 1.06 MHz and 1.16 MHz compared to the IRI 2016 values of 0.92 MHz, 1.09 MHz and 1.01 MHz over the Africa-European, American and Asian sectors respectively making their performances statistically comparable. Compared to ionosonde data, the IRI 2016 model consistently shows a better performance for the hmF2 modelling results in almost all sectors during the investigated periods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Atmospheric and Solar-Terrestrial Physics
ISSN
1364-6826
e-ISSN
1879-1824
Svazek periodika
221
Číslo periodika v rámci svazku
15 Sept
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
105702
Kód UT WoS článku
000672855100003
EID výsledku v databázi Scopus
2-s2.0-85108300827