Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Impact of EMIC-Wave Driven Electron Precipitation on the Radiation Belts and the Atmosphere

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F21%3A00559270" target="_blank" >RIV/68378289:_____/21:00559270 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020JA028671" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020JA028671</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2020JA028671" target="_blank" >10.1029/2020JA028671</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Impact of EMIC-Wave Driven Electron Precipitation on the Radiation Belts and the Atmosphere

  • Popis výsledku v původním jazyce

    In recent years, there has been a growing body of direct experimental evidence demonstrating electromagnetic ion cyclotron (EMIC) waves driving energetic electron precipitation (EEP) at unexpectedly low, sub-MeV energies-as low as only a few hundred keV. EMIC-wave driven scattering at these energies has important ramifications for our understanding of not only radiation belt electron dynamics, but also the importance of EMIC-driven EEP to the chemical balance of the Earth's atmosphere. In this study, we use three experimentally derived EMIC-driven EEP flux spectra to investigate the impact of this precipitation on trapped radiation belt fluxes. In doing so, we resolve an apparent contradiction with earlier results derived from trapped electron flux populations that suggested EMIC waves only caused significant scattering at ultrarelativistic energies. We show that strong sub-MeV EEP measurements are not necessarily mutually exclusive with a strongly relativistic-only trapped flux response, as the sub-MEV peak precipitation is comparatively much smaller than the trapped population at those energies. Using a further six EEP spectra, we also demonstrate that EMIC-driven EEP can generate significant ionization of the Earth's atmosphere above 40 km, leading to the loss of mesospheric ozone. We find poor correlation between EMIC-driven EEP fluxes and geomagnetic activity proxies, such that EMIC-driven EEP is likely to be poorly specified in the forcing factors of modern coupled-climate models.

  • Název v anglickém jazyce

    Impact of EMIC-Wave Driven Electron Precipitation on the Radiation Belts and the Atmosphere

  • Popis výsledku anglicky

    In recent years, there has been a growing body of direct experimental evidence demonstrating electromagnetic ion cyclotron (EMIC) waves driving energetic electron precipitation (EEP) at unexpectedly low, sub-MeV energies-as low as only a few hundred keV. EMIC-wave driven scattering at these energies has important ramifications for our understanding of not only radiation belt electron dynamics, but also the importance of EMIC-driven EEP to the chemical balance of the Earth's atmosphere. In this study, we use three experimentally derived EMIC-driven EEP flux spectra to investigate the impact of this precipitation on trapped radiation belt fluxes. In doing so, we resolve an apparent contradiction with earlier results derived from trapped electron flux populations that suggested EMIC waves only caused significant scattering at ultrarelativistic energies. We show that strong sub-MeV EEP measurements are not necessarily mutually exclusive with a strongly relativistic-only trapped flux response, as the sub-MEV peak precipitation is comparatively much smaller than the trapped population at those energies. Using a further six EEP spectra, we also demonstrate that EMIC-driven EEP can generate significant ionization of the Earth's atmosphere above 40 km, leading to the loss of mesospheric ozone. We find poor correlation between EMIC-driven EEP fluxes and geomagnetic activity proxies, such that EMIC-driven EEP is likely to be poorly specified in the forcing factors of modern coupled-climate models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Geophysical Research-Space Physics

  • ISSN

    2169-9380

  • e-ISSN

    2169-9402

  • Svazek periodika

    126

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    e2020JA028671

  • Kód UT WoS článku

    000636288800033

  • EID výsledku v databázi Scopus

    2-s2.0-85103268121