Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Research cloud electrification model in the Wisconsin dynamic/microphysical model 2: Charge structure in an idealized thunderstorm and its dependence on ion generation rate

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F22%3A00554079" target="_blank" >RIV/68378289:_____/22:00554079 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61389005:_____/22:00554079 RIV/00216208:11310/22:10441646 RIV/68407700:21340/22:00364093

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S016980952200076X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S016980952200076X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.atmosres.2022.106090" target="_blank" >10.1016/j.atmosres.2022.106090</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Research cloud electrification model in the Wisconsin dynamic/microphysical model 2: Charge structure in an idealized thunderstorm and its dependence on ion generation rate

  • Popis výsledku v původním jazyce

    This paper presents a cloud electrification model, which we embedded in the Wisconsin Dynamic and Microphysical Model-2 and labels it CEMW. WISDYMM-2 makes use of two-moment cloud microphysics to produce 5 hydrometeor types (e.g., cloud-droplets, raindrops, cloud-ice, snow, and graupel) that are used by CEMW for storm electrification where storm convection is initiated by a warm air bubble that is placed over an assumed flat terrain with no surface friction. In this paper, CEMW was used to examine cloud electrification in a simulated (idealized) thundercloud and to examine the impact of various formulations of the ion generation rate by cosmic rays (G) on how the storm and individual hydrometeor charges were structured. Results showed that the CEMW generates reasonable electric charge structures, which is qualitatively similar to those published by Brothers et al. (2018) in that it consists of a number of smaller positively and negatively charged regions. This structure differs from a charge structure generally depicted by conceptual models based on conventional balloon measurements of electric field. However, simulated balloon measurements in the idealized thunder clouds further revealed that CEMW produces electrostatic charge distributions and electric field profiles that are in good agreement with those reported by real balloon measurements. How charge is structured by CEMW was tested by formulating G (the ion generation rate) in two different ways. First, we derived G assuming fair weather conditions, which is the usual way applied in cloud electrification modelling. Second, we calculated Gs using the Cosmic Ray Atmospheric Cascade: Cosmic Ray Induced Ionization model for several values of solar modulation potential and cut-off rigidity. The results show that the structure of the electric charge fields does not differ much depending on G, but the fundamental difference between G is in the amount of electric discharges.

  • Název v anglickém jazyce

    Research cloud electrification model in the Wisconsin dynamic/microphysical model 2: Charge structure in an idealized thunderstorm and its dependence on ion generation rate

  • Popis výsledku anglicky

    This paper presents a cloud electrification model, which we embedded in the Wisconsin Dynamic and Microphysical Model-2 and labels it CEMW. WISDYMM-2 makes use of two-moment cloud microphysics to produce 5 hydrometeor types (e.g., cloud-droplets, raindrops, cloud-ice, snow, and graupel) that are used by CEMW for storm electrification where storm convection is initiated by a warm air bubble that is placed over an assumed flat terrain with no surface friction. In this paper, CEMW was used to examine cloud electrification in a simulated (idealized) thundercloud and to examine the impact of various formulations of the ion generation rate by cosmic rays (G) on how the storm and individual hydrometeor charges were structured. Results showed that the CEMW generates reasonable electric charge structures, which is qualitatively similar to those published by Brothers et al. (2018) in that it consists of a number of smaller positively and negatively charged regions. This structure differs from a charge structure generally depicted by conceptual models based on conventional balloon measurements of electric field. However, simulated balloon measurements in the idealized thunder clouds further revealed that CEMW produces electrostatic charge distributions and electric field profiles that are in good agreement with those reported by real balloon measurements. How charge is structured by CEMW was tested by formulating G (the ion generation rate) in two different ways. First, we derived G assuming fair weather conditions, which is the usual way applied in cloud electrification modelling. Second, we calculated Gs using the Cosmic Ray Atmospheric Cascade: Cosmic Ray Induced Ionization model for several values of solar modulation potential and cut-off rigidity. The results show that the structure of the electric charge fields does not differ much depending on G, but the fundamental difference between G is in the amount of electric discharges.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000481" target="_blank" >EF15_003/0000481: Centrum výzkumu kosmického záření a radiačních jevů v atmosféře</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Atmospheric Research

  • ISSN

    0169-8095

  • e-ISSN

    1873-2895

  • Svazek periodika

    270

  • Číslo periodika v rámci svazku

    June 1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    106090

  • Kód UT WoS článku

    000819844200003

  • EID výsledku v databázi Scopus

    2-s2.0-85124648634