Analysis of Two Convective Storms Using Polarimetric X-Band Radar and Satellite Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F22%3A00557274" target="_blank" >RIV/68378289:_____/22:00557274 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216275:25530/22:39919948 RIV/00216208:11310/22:10449422 RIV/60460709:41330/22:91745
Výsledek na webu
<a href="https://www.mdpi.com/2072-4292/14/10/2294/html" target="_blank" >https://www.mdpi.com/2072-4292/14/10/2294/html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs14102294" target="_blank" >10.3390/rs14102294</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Two Convective Storms Using Polarimetric X-Band Radar and Satellite Data
Popis výsledku v původním jazyce
We analyzed two convective storms that passed over or near the Milešovka meteorological observatory. The observatory is located at the top of a hill and has been recently equipped with a Doppler polarimetric X-band radar FURUNO WR2120 for cloud investigations. Our analysis was based mainly on Doppler polarimetric radar data measured in vertical cross-sections (RHI-Range-Height Indicator). Radar data was also used for classifying hydrometeors by a newly developed XCLASS (X-band radar CLASSification) algorithm. We also used rapid scan data measured by the geostationary satellite Meteosat Second Generation to validate radar measurements at the upper parts of storms. Although an attenuation correction was applied to the reflectivity and differential reflectivity measurements, the attenuation typical of X-band radars was noticeable. It was mainly manifested in the differential reflectivity, co-polar correlation coefficient and specific differential phase. Nevertheless, radar measurements can be used to analyze the internal cloud structure of severe convective storms. The XCLASS classification was developed by major innovation of a previously published algorithm. The XCLASS algorithm identifies seven types of hydrometeors: light rain, rain, wet snow, dry snow, ice, graupel, and hail. It uses measured horizontal and vertical radar reflectivity, specific differential phase, co-polar correlation coefficient, and temperature, and applies fuzzy logic to determine the type of hydrometeor. The new algorithm practically eliminates unrealistic results around and below the melting layer provided by the original algorithm. It identifies wet snow in more cases, and areas with individual hydrometeors have more realistic shapes compared to the original algorithm. The XCLASS algorithm shows reasonable results for the classification of hydrometeors and can be used to study the structure of convective storms.
Název v anglickém jazyce
Analysis of Two Convective Storms Using Polarimetric X-Band Radar and Satellite Data
Popis výsledku anglicky
We analyzed two convective storms that passed over or near the Milešovka meteorological observatory. The observatory is located at the top of a hill and has been recently equipped with a Doppler polarimetric X-band radar FURUNO WR2120 for cloud investigations. Our analysis was based mainly on Doppler polarimetric radar data measured in vertical cross-sections (RHI-Range-Height Indicator). Radar data was also used for classifying hydrometeors by a newly developed XCLASS (X-band radar CLASSification) algorithm. We also used rapid scan data measured by the geostationary satellite Meteosat Second Generation to validate radar measurements at the upper parts of storms. Although an attenuation correction was applied to the reflectivity and differential reflectivity measurements, the attenuation typical of X-band radars was noticeable. It was mainly manifested in the differential reflectivity, co-polar correlation coefficient and specific differential phase. Nevertheless, radar measurements can be used to analyze the internal cloud structure of severe convective storms. The XCLASS classification was developed by major innovation of a previously published algorithm. The XCLASS algorithm identifies seven types of hydrometeors: light rain, rain, wet snow, dry snow, ice, graupel, and hail. It uses measured horizontal and vertical radar reflectivity, specific differential phase, co-polar correlation coefficient, and temperature, and applies fuzzy logic to determine the type of hydrometeor. The new algorithm practically eliminates unrealistic results around and below the melting layer provided by the original algorithm. It identifies wet snow in more cases, and areas with individual hydrometeors have more realistic shapes compared to the original algorithm. The XCLASS algorithm shows reasonable results for the classification of hydrometeors and can be used to study the structure of convective storms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000481" target="_blank" >EF15_003/0000481: Centrum výzkumu kosmického záření a radiačních jevů v atmosféře</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
2072-4292
Svazek periodika
14
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
2294
Kód UT WoS článku
000804909300001
EID výsledku v databázi Scopus
2-s2.0-85130313931