Jupiter's Low-Altitude Auroral Zones: Fields, Particles, Plasma Waves, and Density Depletions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F22%3A00560525" target="_blank" >RIV/68378289:_____/22:00560525 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10456686
Výsledek na webu
<a href="https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA030334" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JA030334</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2022JA030334" target="_blank" >10.1029/2022JA030334</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Jupiter's Low-Altitude Auroral Zones: Fields, Particles, Plasma Waves, and Density Depletions
Popis výsledku v původním jazyce
The Juno spacecraft's polar orbits have enabled direct sampling of Jupiter's low-altitude auroral field lines. While various data sets have identified unique features over Jupiter's main aurora, they are yet to be analyzed altogether to determine how they can be reconciled and fit into the bigger picture of Jupiter's auroral generation mechanisms. Jupiter's main aurora has been classified into distinct ´zones´, based on repeatable signatures found in energetic electron and proton spectra. We combine fields, particles, and plasma wave data sets to analyze Zone-I and Zone-II, which are suggested to carry upward and downward field-aligned currents, respectively. We find Zone-I to have well-defined boundaries across all data sets. H+ and/or H-3(+) cyclotron waves are commonly observed in Zone-I in the presence of energetic upward H+ beams and downward energetic electron beams. Zone-II, on the other hand, does not have a clear poleward boundary with the polar cap, and its signatures are more sporadic. Large-amplitude solitary waves, which are reminiscent of those ubiquitous in Earth's downward current region, are a key feature of Zone-II. Alfvenic fluctuations are most prominent in the diffuse aurora and are repeatedly found to diminish in Zone-I and Zone-II, likely due to dissipation, at higher altitudes, to energize auroral electrons. Finally, we identify significant electron density depletions, by up to 2 orders of magnitude, in Zone-I, and discuss their important implications for the development of parallel potentials, Alfvenic dissipation, and radio wave generation.
Název v anglickém jazyce
Jupiter's Low-Altitude Auroral Zones: Fields, Particles, Plasma Waves, and Density Depletions
Popis výsledku anglicky
The Juno spacecraft's polar orbits have enabled direct sampling of Jupiter's low-altitude auroral field lines. While various data sets have identified unique features over Jupiter's main aurora, they are yet to be analyzed altogether to determine how they can be reconciled and fit into the bigger picture of Jupiter's auroral generation mechanisms. Jupiter's main aurora has been classified into distinct ´zones´, based on repeatable signatures found in energetic electron and proton spectra. We combine fields, particles, and plasma wave data sets to analyze Zone-I and Zone-II, which are suggested to carry upward and downward field-aligned currents, respectively. We find Zone-I to have well-defined boundaries across all data sets. H+ and/or H-3(+) cyclotron waves are commonly observed in Zone-I in the presence of energetic upward H+ beams and downward energetic electron beams. Zone-II, on the other hand, does not have a clear poleward boundary with the polar cap, and its signatures are more sporadic. Large-amplitude solitary waves, which are reminiscent of those ubiquitous in Earth's downward current region, are a key feature of Zone-II. Alfvenic fluctuations are most prominent in the diffuse aurora and are repeatedly found to diminish in Zone-I and Zone-II, likely due to dissipation, at higher altitudes, to energize auroral electrons. Finally, we identify significant electron density depletions, by up to 2 orders of magnitude, in Zone-I, and discuss their important implications for the development of parallel potentials, Alfvenic dissipation, and radio wave generation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA17070" target="_blank" >LTAUSA17070: Elektromagnetické vlny v planetárních ionosférách a magnetosférách</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geophysical Research-Space Physics
ISSN
2169-9380
e-ISSN
2169-9402
Svazek periodika
127
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
e2022JA030334
Kód UT WoS článku
000843443700001
EID výsledku v databázi Scopus
2-s2.0-85133543010