Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Impact of satellite-derived cloud cover on road weather forecasts

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F23%3A00573220" target="_blank" >RIV/68378289:_____/23:00573220 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00020699:_____/23:N0000032

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0169809523002843" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0169809523002843</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.atmosres.2023.106887" target="_blank" >10.1016/j.atmosres.2023.106887</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Impact of satellite-derived cloud cover on road weather forecasts

  • Popis výsledku v původním jazyce

    This paper presents an innovative approach to road surface temperature (RST) forecasting by using satellite-derived cloud cover information as inputs for the FOrecast of Road TEmperature and condition (FORTE) road weather model (RWM). FORTE is a 1D physical based model used for solving energy balance and heat conduction equations. The new method uses the extrapolated cloud mask product calculated from Meteosat Second Generation satellite measurements to derive the forecasted cloud cover, which is then entered into the RWM. This method is based on the assumption that cloud cover extrapolated for the very near future (i.e., 1–3 h) from current conditions is able to provide more accurate input data (as compared to the currently used numerical weather prediction (NWP) model forecast) that can be used for calculating the radiation fluxes in the RWM. The resulting RSTs were verified over a 2-month period from December 2021 to January 2022 at road weather stations located on 4 selected Czech motorways. The obtained results showed that the innovated model run using satellite-derived cloud cover generated RSTs closer to the observed values, in contrast to the original model run, whose predictions have larger errors. The greatest improvement is evident during the day, when solar radiation dominates, and especially in the 2nd and 3rd forecasted hours, when extrapolated cloud cover helps to reduce the morning overestimation and afternoon underestimation of RSTs. If the NWP model incorrectly predicts clouds over the road surface on cloudless nights, the emitted downwards radiation from the clouds towards the Earth's surface is increased in the RWM, which leads to an overestimation of the RSTs. On the other hand, incorrectly predicting clear skies leads to a negative radiation balance in the RWM, which typically results in RSTs that are lower than the observations.

  • Název v anglickém jazyce

    Impact of satellite-derived cloud cover on road weather forecasts

  • Popis výsledku anglicky

    This paper presents an innovative approach to road surface temperature (RST) forecasting by using satellite-derived cloud cover information as inputs for the FOrecast of Road TEmperature and condition (FORTE) road weather model (RWM). FORTE is a 1D physical based model used for solving energy balance and heat conduction equations. The new method uses the extrapolated cloud mask product calculated from Meteosat Second Generation satellite measurements to derive the forecasted cloud cover, which is then entered into the RWM. This method is based on the assumption that cloud cover extrapolated for the very near future (i.e., 1–3 h) from current conditions is able to provide more accurate input data (as compared to the currently used numerical weather prediction (NWP) model forecast) that can be used for calculating the radiation fluxes in the RWM. The resulting RSTs were verified over a 2-month period from December 2021 to January 2022 at road weather stations located on 4 selected Czech motorways. The obtained results showed that the innovated model run using satellite-derived cloud cover generated RSTs closer to the observed values, in contrast to the original model run, whose predictions have larger errors. The greatest improvement is evident during the day, when solar radiation dominates, and especially in the 2nd and 3rd forecasted hours, when extrapolated cloud cover helps to reduce the morning overestimation and afternoon underestimation of RSTs. If the NWP model incorrectly predicts clouds over the road surface on cloudless nights, the emitted downwards radiation from the clouds towards the Earth's surface is increased in the RWM, which leads to an overestimation of the RSTs. On the other hand, incorrectly predicting clear skies leads to a negative radiation balance in the RWM, which typically results in RSTs that are lower than the observations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/CK01000048" target="_blank" >CK01000048: Systém liniové předpovědi stavu a teploty povrchu dálnic ČR</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Atmospheric Research

  • ISSN

    0169-8095

  • e-ISSN

    1873-2895

  • Svazek periodika

    292

  • Číslo periodika v rámci svazku

    September 1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    106887

  • Kód UT WoS článku

    001033093600001

  • EID výsledku v databázi Scopus

    2-s2.0-85162965273