Magnetopause location modeling using machine learning: inaccuracy due to solar wind parameter propagation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F24%3A00586577" target="_blank" >RIV/68378289:_____/24:00586577 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/24:10484599
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/fspas.2024.1390427/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fspas.2024.1390427/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fspas.2024.1390427" target="_blank" >10.3389/fspas.2024.1390427</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Magnetopause location modeling using machine learning: inaccuracy due to solar wind parameter propagation
Popis výsledku v původním jazyce
An intrinsic limitation of empirical models of the magnetopause location is a predefined magnetopause shape and assumed functional dependences on relevant parameters. We overcome this limitation using a machine learning approach (artificial neural networks), allowing us to incorporate general, purely data-driven dependences. For the training and testing of the developed neural network model, a data set of about 15,000 magnetopause crossings identified in the THEMIS A-E, Magion 4, Geotail, and Interball-1 satellite data in the subsolar region is used. A cylindrical symmetry around the direction of the impinging solar wind is assumed, and solar wind dynamic pressure, interplanetary magnetic field magnitude, cone angle, clock angle, tilt angle, and corrected Dst index are considered as parameters. The effect of these parameters on the magnetopause location is revealed. The performance of the developed model is compared with other empirical magnetopause models. Finally, we demonstrate and discuss the inaccuracy of magnetopause models due to the inaccurate information about the impinging solar wind parameters based on measurements near the L1 point. This inaccuracy imposes a theoretical limit on the precision of magnetopause predictions, a limit that our model closely approaches.
Název v anglickém jazyce
Magnetopause location modeling using machine learning: inaccuracy due to solar wind parameter propagation
Popis výsledku anglicky
An intrinsic limitation of empirical models of the magnetopause location is a predefined magnetopause shape and assumed functional dependences on relevant parameters. We overcome this limitation using a machine learning approach (artificial neural networks), allowing us to incorporate general, purely data-driven dependences. For the training and testing of the developed neural network model, a data set of about 15,000 magnetopause crossings identified in the THEMIS A-E, Magion 4, Geotail, and Interball-1 satellite data in the subsolar region is used. A cylindrical symmetry around the direction of the impinging solar wind is assumed, and solar wind dynamic pressure, interplanetary magnetic field magnitude, cone angle, clock angle, tilt angle, and corrected Dst index are considered as parameters. The effect of these parameters on the magnetopause location is revealed. The performance of the developed model is compared with other empirical magnetopause models. Finally, we demonstrate and discuss the inaccuracy of magnetopause models due to the inaccurate information about the impinging solar wind parameters based on measurements near the L1 point. This inaccuracy imposes a theoretical limit on the precision of magnetopause predictions, a limit that our model closely approaches.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-26463S" target="_blank" >GA21-26463S: Procesy na magnetopauze, jejich příčiny a následky</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Astronomy and Space Sciences
ISSN
2296-987X
e-ISSN
2296-987X
Svazek periodika
11
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
1390427
Kód UT WoS článku
001233399900001
EID výsledku v databázi Scopus
2-s2.0-85194891924